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ABSTRACT 

 

During the onset of the COVID-19 epidemic, there was a significant investment 

globally by clinical laboratories and hospitals in improving their molecular-based diagnostics 

infrastructure. In the current post-epidemic scenario, the upgraded infrastructure is underused 

as there is a significant decrease in COVID-19 testing. This is primarily due to the 

unavailability of commercial molecular assays to diagnose different infectious and non-

infectious diseases. Another gap in implementing the molecular assays in mainstream diagnosis 

is the unavailability of automated analysis and database management of real-time PCR results 

for both probe-based and High-Resolution Melt Analysis (HRMA) based assay. 

Microbiological Laboratory, Coimbatore has patented an HRMA-based identification of 

molecular targets which is critical for the treatment of fatal diseases such as septicemia. The 

unavailability of customized predictive analysis and reporting for this HRM increases the 

dependency on error-prone manual interpretation of such complex data.  

This thesis is a foundation for developing a first-of-its-kind framework for automated 

analysis of HRM data which can be customized for different molecular targets. We have used 

advanced computational techniques like Machine Learning, Signal Processing and Deep 

Learning predictive analysis of HRM data of clinical samples tested. In this thesis, the team 

has designed and discussed the fundamental principle for processing, analysing and 

interpreting the HRM data for a representative set of molecular targets, which can aid the 

technicians and clinicians in reporting. We have also developed a database for structured 

storage and retrieval of HRM data which could help in linking this analysis software with the 

existing Laboratory Information Management Software used for reporting clinical re 
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CHAPTER 1 

INTRODUCTION 

 

Laboratory Information Management Systems (LIMS) transformed conventional 

laboratory operations into digitally-enabled infrastructure operations to attain high productivity 

and efficiency. LIMS aid a clinical laboratory to create an ecosystem for automating 

workflows, integrate instruments, manage samples, data management, real-time collaboration, 

perform data analytics, check quality control and patient reporting in a secured, user-friendly 

and polarized environment (Fig. 1). Thus, the software is crucial not only in a clinical lab but 

also in wide laboratories ranging from academic research, chemical labs, and manufacturing to 

agricultural testing, forensics, etc., [1, 2].  

 

Figure 1: Capabilities of Laboratory Information Management System 

Clinical laboratories are healthcare institutions that offer a variety of techniques to aid 

physicians with patient diagnostics, care, and management run by laboratory scientists [3]. 

With the rapid advancements in hardware and software technology, all the specialized clinical 

laboratories are modernized with state-of-the-art laboratory machines and instruments for 
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testing and diagnosing with high quality and accurate results, therefrom quick analysis and 

reports made in respective software.  

Shirts et al. [4], stated the importance of analytics in clinical laboratories as ‘Clinical 

laboratory analytics is the systematic evaluation and communication of clinical laboratory 

testing data to improve healthcare operations and patient outcomes.’ [4, p. 9]. In looking at the 

system (Fig. 1), where the analytics part is the most demanding and includes complicated 

methods, such as analyzing and interpreting the test results and checking with quality control 

data to monitor the instrument's performance and accuracy. Along with these tasks, there are 

some limitations of data acquisition and integration phases in the analytics pipeline to integrate 

or acquire several other instruments with the respective data formats of their respective 

manufacturers’ software/plugins in a general LIMS, taking into account large-sized labs. 

However, there are a few manufacturers/vendors that address this shortage by providing a 

solution for configuring instruments in the workflow [1, 2, 5], but this software might be 

expensive for mid to small-sized laboratories, or custom-built software can be a solution. 

  According to Baron [4], clinical laboratory analytics should focus on improving 

decision support (i.e., the use of tools or systems to provide clinicians with relevant 

information, recommendations, and guidelines at the point of care when ordering and 

interpreting laboratory tests) during test ordering and result interpretation. This approach 

requires developing a strong decision support infrastructure that embodies both rule-based and 

machine learning-based algorithms into the clinical workflow. In addition to that the 

importance of using “offline” clinical laboratory analytics to analyze and enhance test 

utilization (e.g., identifying variations in test ordering patterns between clinicians that cannot 

be explained by clinical factors) was also discussed [4, p. 11]. 

Most of the third-party vendors provide generic LIMS, in which the analytics pipeline 

involves transferring data from the LIMS to the different environments/platforms for analyzing 

the data, thus making a quite complex situation for the technicians and clinicians to perform 

analysis and interpretation in intermediate-level and national reference labs with faster 

deliverance and accurate results, where they own different kinds of instruments [3], [4, p. 11]. 

Besides, mid to large-sized intermediate-level labs have laborious and time-consuming 

processes for doing analytics without LIMS. In concern to the lab budget, the specific or 

generic LIMS developed by various PCR manufacturers or software vendors may charge 

additional fees for updates or require ongoing maintenance for continued support and updates. 
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Molecular diagnostics is a high complexity clinical laboratory [3], which amplifies the 

genetic level (DNA or RNA) of cells or pathogens to detect mutations, gene expression, or 

infectious agents at the molecular level using PCR [6, Sec. 1.1]. Quantitative polymerase chain 

reaction (i.e., real-time PCR or rtPCR) data analysis is a highly significant process that includes 

many primarily different techniques such as experiment setup, data processing, normalization, 

amplification analysis, efficiency and performance of PCR reaction, visualization of results [7, 

8], this technique allows DNA amplification in real-time accumulation of fluorescence in 

reaction. High-Resolution Melt Analysis (HRMA) is an advanced technique of conventional 

Melt Curve Analysis (MCA) with a rtPCR instrument or its specialized instrument to identify 

the melting temperatures (Tm) of DNA, though melt curve analysis also gives reliable results 

however, HRMA gives more accurate results compared to MCA [7]. These techniques are done 

by the various commercialized PCR manufacturers’ data analysis software/plugins. Though 

stipulated statistical analyses and mathematical algorithms which can be done easily by 

clinicians with this software then, after the analyses part, information and insights gained 

finally lead to interpreting the results require certain expertise in the field. 

Wrong interpretations and analysis of PCR test data and post-PCR data, (i.e., DNA 

melting curve, melt peaks, and HRMA curve) lead to serious consequences both for the patients 

affected and for the laboratory itself. However, the interpretation of PCR test result data is 

manually done by the clinicians/microbiologists with the domain knowledge (e.g., DNA 

melting, amplification of DNA, high-resolution melt analysis, characteristics of molecular 

pathogens, and thermodynamics of PCR) and other major parameters (such as., components 

added in the PCR compound, primers, and so on) by visual inspections and gain detailed 

insights from the analysis software. This visual interpretation highly requires intense laborious 

and time-consuming processes for novice clinicians/researchers and for complex case data, 

hence it impacts the right time for results to be delivered. 

Several clinical laboratories own different PCR manufacturers’ instruments and their 

respective software/plugins for their unique features and accurate results to obtain and interpret 

the data is challenging for mid to large-sized intermediate-level labs, which run numerous PCR 

experiments on a day-to-day basis. In addition to that, various democratized 

software/plugins/web-based applications are available, and each of them has its advantages and 

limitations for doing analytics after the experiment is done but, this might or might not give 

accurate results, according to different types of analysis and techniques used in the software.  
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As defined by Shirts et al., this project aims to improve microbiologists’/clinicians’ 

decision support and assist them by leveraging Artificial Intelligence and Machine Learning 

with the advent of HRMA data during the conventional analytical process to improve the 

performance of the interpretation of results. Additionally, to address the absence in the 

analytics phase by developing an automated application to aid laboratorians/clinicians. 

 

1.1 ORGANIZATION PROFILE 

 

   

 

 

The Microbiological Laboratory Research and Services India Private Limited 

(Microserv) is an ISO 13485:2016 certified medical manufacturing facility and a research 

institute. Microserv develops and produces diagnostic kits such as ready-to-use 

microbiological culture media for clinical and industrial use, molecular assay reagents and 

MLRS-STaTAST. MLRS-STaTAST is a novel patented antibiotic sensitivity testing 

technology jointly developed with Anna University. Microserv also provides training in 

molecular diagnosis jointly with Bharathiar University. 

The Microbiological Laboratory, Coimbatore is a leading NABL-accredited clinical 

laboratory in India. It is the first clinical laboratory which has several molecular assays under 

the NABL scope since 2007. Microbiological Laboratory has developed and patented HRMA 

based molecular assay for infectious diseases which is currently being used for patient 

diagnosis. Microbiological Laboratory operates over 50 branches throughout India that are 

connected to a central server system, enabling the consistent delivery of high-quality reports 

across all locations. 

 

1.2 PROBLEM DEFINITION 

The High-Resolution Melting Analysis (HRMA) involves monitoring the 

disassociation characteristics of double-stranded DNA during denaturation heating. Mutations 

and sequence variations in the DNA cause changes in the melting temperature and curve shape, 

allowing for sensitive and rapid detection of genetic variations without the need for expensive 
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probes or post-PCR processing. HRMA is aided by commercially available thermal-cycler 

(PCR) machines and respective analysis plugins/software for generating the melting curve 

graphs based on the raw fluorescence data. 

Visual interpretation 

 The interpretation of HRM data is crucial and it requires a clear understanding of the 

melting temperatures of every DNA target. HRMA software provide visualization (graphs) of 

melting signals against temperature, which comprises both perfect and imperfect (noisy) 

signals. The result interpretation usually involves visual observations and analysis by 

technicians. Experts who perform interpretation must focus on removing such noisy signals 

from their analysis by following some thresholding metrics. As the number of samples scales 

up, the interpretation also requires scaling, and doing it manually is challenging and time-

consuming. Typically, experts would have much experience, and the perception they have in 

interpretation is huge and impeccable. In practice, experts alone cannot perform interpretation 

at all times, and several other beginners and junior technicians are also often required to 

perform interpretation, considering the productivity. 

Versatile software 

 Various PCR instrument manufacturers have their proprietary data analysis software 

and algorithms, which calculate and process the HRMA data with stipulated steps. Hence, 

different software can produce different melting curves for the same sample in HRMA analysis. 

This can occur due to differences in the algorithms used for data analysis and curve fitting, 

variations in the baseline correction and normalization methods, and other factors related to 

data processing and interpretation. To ensure accurate and reliable results, it is important to use 

standardized melting curve plotting protocol and software validated for the specific HRMA 

application. 

 

Predictive analysis 

Most of the analysis software of HRMA uses the fluorescence response vs temperature 

data for the samples tested to plot the melting curve. The software uses statistical techniques 

and mathematical algorithms to analyze the raw fluorescence signals to melt signals. This 

software has various features such as identifying mutations of the pathogens, genotyping and 

detecting SNPs. Predictive analysis techniques are unavailable in this software for studying the 

unique features (e.g., Melting temperature (Tm), melting peak height, curve shape, curve width, 
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inflection point, and area under the curve) of melt signals which can be used for creating digital 

signatures unique for each target.   

 

1.3 BACKGROUND AND NEED 

The analysis, interpretation, and reporting of HRMA in the context of enhancing the 

decision support of the clinicians with the interoperable customized predictive analysis and 

reporting will decrease the dependency on laborious visual interpretation of such complex data. 

With the existing software available, such have their limitations of producing melt curve with 

the standard statistical and mathematical methods, and to the extent there are few commercial 

software which utilizes some of the machine learning algorithms such as principal component 

analysis and k-means for dimensionality reduction and clustering the data for other applications 

such as genotyping and mutation scanning. However, this software is outdated with support 

only for Windows 7 platform.  

 Currently, HRMA data analysis and interpretation require technical expertise, which 

can result in variability and errors in the results. An AI-based framework can standardize the 

interpretation and analysis of HRMA data, leading to more accurate and reliable results. This 

framework can provide automated data management, making the process more efficient and 

less time-consuming. With the integration of machine learning algorithms, the framework can 

learn from past data and adapt to new data sets, improving its accuracy and efficiency over 

time. The AI-based framework can also reduce human error and increase the speed of analysis, 

making it possible to analyze more clinical samples in a shorter time frame. The predictive 

analysis of HRMA data allows for rapid identification of the pathogen causing the disease. 

The implementation of an AI-based framework for HRMA data management, 

interpretation, and reporting can also facilitate the sharing of data between laboratories and 

clinics, improving collaboration and accelerating the development of new diagnostic tools. The 

framework can also be used to track the evolution of genetic variations in pathogens, enabling 

early detection of emerging pathogens and their drug resistance patterns. 

Overall, an AI-based framework for HRMA data management, interpretation, and 

reporting has the potential to revolutionize the clinical diagnosis of infectious diseases, making 

it more accurate, reliable, and efficient. It can provide a standardized approach to HRMA data 

analysis, allowing for better comparison of results across different laboratories, and can 

ultimately lead to the development of more effective diagnostic tools and treatment strategies. 
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1.4 PURPOSE OF THE STUDY 

 The purpose of the study aims to develop and implement an AI framework to analyze 

and interpret High-Resolution DNA melt data with faster deliverance of accurate results and 

reports to aid clinicians/laboratorians in an intermediate-level laboratory. 

 Interpretation of HRMA data is handled by clinicians with keen visual observations and 

inspections with high domain expertise, which is a time-consuming and laborious process, and 

the lack of data acquisition and extraction pipeline makes a bit tangled situation at intermediate-

level and national reference laboratories. These factors influence the speed and accuracy of 

deliverance and providing responsive reports to physicians and patients. Harnessing state-of-

the-art AI and ML techniques and algorithms to analyze, interpret, and report without human 

intervention in a web-based platform. 

 To encounter the interpretation of HRMA data in concern with rtPCR data analysis 

techniques, the team explored the HRMA data of various pathogens by performing pre-

processing, and feature engineering, with appropriate statistical analyses to gain insights. 

Implemented some of the existing methodologies beginning from the bare method of 

examining the images of DNA melt signal, to the approach of unravelling the co-ordinates of 

raw-fluorescence signal, DNA melt signal, and lastly the combination of images and co-

ordinates of DNA melt signals. Upon the researched methodologies, ultimately the team 

devised a feasible and practical solution of developing a Python-based library with custom-

trained Deep Learning models for the interpretation, and finally measured and validated the 

results with the expert clinicians. Along with these research methods, the team developed 

automated software for data extraction from the PCR data analysis plugin/software. 

 The goal of the study is to implement the web-based AI framework for analysis, 

interpretation, and reporting to assist technicians and clinicians. Another goal of the study is to 

develop automated software for data extraction.  

 

 

1.5 DEFINITIONS 

This section provides a major list of concepts in detail such as PCR reaction, the 

processes behind the reaction, DNA melting behaviour, amplification analysis, and so on. 



 

25 
 

1.5.1 POLYMERASE CHAIN REACTION 

The Polymerase Chain Reaction (PCR) is a molecular technique used for DNA 

quantification, biomarker identification, genotyping, and mutation detection. The technique is 

based on the amplification of a specific segment of DNA into several copies, using a DNA 

polymerase enzyme (Fig. 2). PCR involves using short synthetic DNA fragments called 

primers designed based on sequences specific to each target. The segment of the DNA 

complementing the sequences of the primer will be amplified for multiple PCR cycles until it 

reaches the limit of detection [9, 10].  

Figure 2: Amplification of DNA segments 
Source: National Human Genome Research Institute 

Traditional PCR demand that the product be examined following the completion of the 

reaction, this procedure is frequently referred to as “end point” analysis [7]. Due to the 

improvements in hardware and software, real-time PCR (also known as quantitative PCR or 

qPCR or rtPCR) occurred as a new variation that constantly accumulates fluorescent signals 

from several polymerase reactions and permits to detect the DNA amplification at the right 

moment [11].  

Real-time PCR uses commercially available fluorescence-detecting thermocyclers to 

amplify specific nucleic-acid sequences tagged with different types of fluorescent dyes (probes 

and SYBRTM green dye) and measure their concentration simultaneously. Target sequences are 

amplified and quantified simultaneously in the same PCR machine. Hence, the PCR 

amplification of the target sequence can be monitored in real-time thus eliminating 
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quantification steps such as agarose gel electrophoresis [11]. PCR was widely used during the 

recent COVID-19 outbreak to manage the epidemic across the world and remains the gold-

standard method for COVID-19 diagnosis. The COVID-19 diagnosis is the latest application 

that has popularised this qPCR technique in recent times, and the application of PCR in the 

diagnosis of pathogens (targets) such as bacteria, viruses, fungi, and other non-culture 

biomarkers has been available for several years [12, 13]. 

1.5.2 DNA MELTING 

The dissolution of the double-stranded DNA (dsDNA) helix into single coils is referred 

to as DNA melting. It can be accomplished by simply heating double-stranded DNA. The 

temperature at which the DNA strands dissociate into single coils depends on the number of 

hydrogen bonds holding the complementary strands. The most commonly used method to 

determine the melting temperature of a PCR product is to subject the product to a temperature 

gradient in the presence of intercalating dye. The intercalating dyes are chemicals that only 

emit light when bound to double-stranded DNA.  

In a typical melting experiment, a PCR product is mixed with an intercalating dye, and 

fluorescence emitted by this mix is monitored as the sample is slowly heated (subjected to a 

temperature gradient). The outcome of the analysis is a curve displaying fluorescence changes 

emitted by the sample over the range of temperatures that the sample was subjected to, 

commonly referred to as a melting profile (Fig. 3). 

  

 

 

 

 

 

 

 

Figure 3: Melting profile of a PCR product 

Source: MethylDetect 

At the beginning of the experiment, the temperature is low and all PCR product in the 

sample is double-stranded. Thus, the fluorescence level is high in the sample (Fig. 3-A). 

Observing high levels of fluorescence, as the temperature increases up to the point, where all 
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hydrogen bonds within the PCR fragment are broken and the amount of double-stranded PCR 

product drastically decreases. Consequently, a sharp decrease in the detected fluorescence level 

(Fig. 3-B). At a high temperature, there is no double-stranded PCR product in the sample and 

the fluorescence levels are close to 0 (Fig. 3-C). The temperature at which the sharp drop in 

the fluorescence depends on the number of hydrogen bonds in the analyzed PCR product and 

hence is specific to the analyzed fragment. 
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1.5.3 MELT CURVE ANALYSIS 

The Melt Curve is derived from the raw fluorescence data, by getting the first negative 

derivative (− 𝑑𝐹 𝑑𝑇⁄ ) of Fluorescence intensity and Temperature (fig. 4). In Melt curve 

analysis, the data comes as a result of HRM (in the case of specialized instrument used) being 

analyzed further, to determine the melting characteristics of several DNA in a more precise 

way. In this stage, the derivative of fluorescence intensity captured in real-time will be plotted 

against the temperature so, the temperature at which the dsDNA began to denature into ssDNA, 

the point at the melt peaks which resemble the melting temperature of the DNA. A threshold 

is manually set by the clinicians through keen visual inspections and observations with the help 

of commercial PCR manufacturers’ analysis software. 

 

 

 

 

 

Figure 4: Negative derivative plot of the Melting curve 

Source: QIAGEN’s Q-Rex Software 

In looking at Fig. 4, the characteristics of the Melt curves are observed and studied by 

concerning various features like: 

• Peaks 

• Shape of the curve 

• Height 

• Range 

• Area under the curve 
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1.5.4 AMPLIFICATION CURVE ANALYSIS 

 The Amplification Curves are also known as ‘growth curves’ that display the graph of 

Cycle number vs Fluorescence (fig. 5), these data from real-time PCR are used to detect the 

presence of the PCR product (i.e., target DNA) and a threshold (Ct) line is to be set in between 

the exponential and linear phase, to identify which PCR product is amplified earlier in the PCR 

reaction cycles [7], [20, p. 212]. 

The expression levels of genes can be measured by either absolute or relative 

quantification. In absolute quantification, a calibration curve is used to relate the PCR signal 

to the input copy number, while relative quantification measures the relative change in mRNA 

expression levels. The accuracy of an absolute real-time rtPCR assay depends on the identical 

amplification efficiencies of both the native target and the calibration curve in the RT reaction 

and kinetic PCR. Relative quantification is a simpler method compared to absolute 

quantification since it does not require a calibration curve. It involves comparing the expression 

levels of a target gene to a reference gene and is sufficient for most investigations into changes 

n gene expression. The units used for relative quantification are unimportant and can be 

compared across multiple real-time RT-PCR experiments [14, Sec. 3.2.6]. 

 

Figure 5: PCR Amplification Cure 
Source: QIAGEN’s Q-Rex Software 

In [15, Fig. 1, A] depicts the three phases of PCR: 

• Exponential phase 

• Linear phase 

• Plateau phase 
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Figure 6: Theoretical plot of PCR, three phases (adapted from Yuan et al. [15]) 

The PCR will eventually reach the plateau phase during later cycles and the amount of 

product will not change because some reagents become depleted. The exponential phase is the 

earliest segment of the PCR, in which the product increases exponentially because the reagents 

are not limited. the linear phase is characterized by a linear increase in the product as PCR 

reagents become limited. the PCR will eventually reach the plateau phase during later cycles 

[15, pp. 1 – 2]. 

 

1.5.5 HIGH-RESOLUTION DNA MELT ANALYSIS 

A novel DNA analysis technique called High-Resolution Melting (HRM/HRMA) is a 

significant method that was developed in 2002 through a collaborative effort between the 

University of Utah, USA, and Idaho Technology Inc., USA [16, p. 219]. for analyzing genetic 

variations such as SNPs (single nucleotide polymorphisms), mutations, and methylations in 

PCR amplicons. It is a homogeneous, close-tube, post-PCR technique that allows researchers 

to study the thermal denaturation of double-stranded DNA in greater detail than traditional 

melting curve analysis, resulting in higher information yield [16, 17], with the advanced 

hardware. 

 By analyzing the disassociation (melting) behaviour of nucleic acid samples, HRMA 

can differentiate between samples based on their sequence, length, guanine-cytosine (GC) 

content, or strand complementarity and it can even detect single base changes like SNPs [18]. 

It is a powerful tool that enables the detection of unknown variations in PCR amplicons, 

making it a valuable alternative to sequencing and the range of applications including [19]: 
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• Mutation discovery 

• Screening for loss of heterozygosity 

• DNA fingerprinting 

• SNP genotyping 

• DNA methylation analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: High-Resolution Melt Curve 
Source: QIAGEN’s Q-Rex Software 
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1.5.6 OVERVIEW OF DNA MELT SIGNAL INTERPRETATION 

 DNA melt signals are the important output of PCR experiments, as they provide 

information about the characteristics of the amplified DNA. As the temperature increases, the 

double-stranded DNA begins to denature into single-strand, and the DNA-binding dye will 

dissociate from the DNA, causing a decrease in fluorescence. The temperature at which half of 

the double-stranded DNA is denatured is called the melting temperature (Tm). 

 

 

 

 

 

 

 

Figure 8: Reference DNA melting signal – Meningitis Panel 

Each pathogen will be having different DNA melting temperatures and their respective 

signals will also possess different shapes and sizes. Usually, DNA melting signals are in bell-

shaped curve with peaks, which denotes the melting point or the melting temperature of the 

DNA. Interpretation will be made through visual inspection, performed on such signal’s shape, 

peaks, and size. Fig. 8 shows the DNA melting signals of Haemophilus influenzae (HI), 

Streptococcus pneumoniae (SP), and Neisseria meningitidis (NM). 

 

 

Table 1: DNA melting temperature standards for Meningitis Panel of the positive sample [fig. 8] 

 

No. Colour 
Pathogen 

Name 

Temperature 

of melt-

Observed 

Tm 

Temperature 

of melt-

Expected 

Tm 

Cycle of 

Threshold 

Cycle of 

Threshold 
Threshold 

1 

 

Haemophilus 

influenzae 
78.35 ºC 77±1 ºC 27.25 26 0.4 

2 
  Streptococcus 

pneumoniae 
78.40 ºC 78±1 ºC 24.88 25 0.4 

3 
  Neisseria 

meningitidis 

79.27 ºC 

/81.13 ºC 
79/81±1 ºC 19.52 2 0.4 
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A. Melting Temperature 

Pathogen Target Tm 

Acinetobacter baumanii 81ºC 

Bacteriode fragillis 80 ºC 

CONS-coagulase-negative Staphylococci. 80 ºC 

Enterobacter spp. 84 ºC 

Enterococccus feacalis 82 ºC 

Enterococccus spp. 84 ºC 

Group A Streptococcus-GAS 82 ºC 

Serratia macessens 85 ºC 

Staphylococcus spp. (Gram-positive) 77 ºC 

Streptococcus agalactiae-GBSC 77 ºC 

Streptococcus pneumoniae (Gram-positive) 78 ºC 

Table 2: Sample DNA melting temperature standards for Sepsis Panel  

There is a set of pre-defined DNA melting temperature standards recorded by clinicians 

and microbiologists for identifying and distinguishing melt signals during the interpretation 

process. Peaks found from such melt signals (Fig. 8) for a proposed pathogen, that seemed to 

be satisfying (±1) the standard, will be treated as ‘Positive’, and if not, will be treated as 

‘Negative’ and vice-versa. 

B. Thresholding 

 Thresholding, on the other hand, plays a crucial role in this process, which is being set 

manually during the analysis, for eliminating noisy signals and unwanted peaks. It is a simple 

numerical figure on the y-axis (i.e., derivative of fluorescence over temperature), where only 

those peaks will be considered on or above such numerical figure (Fig. 8 and Table 1).  

Apart from Melting temperature and threshold, there are several other parameters that must 

also be put into consideration for interpreting signals, and they are,  

• Temperature point at which the signal start rising. 

• Temperature point at which the signal falls/saturated. 

• Prominence of the signal. 

• Area under the curve. 

Such attributes of DNA melt signals will be considered as features, and relevant feature 

engineering techniques must be employed to bring the best out of them. The techniques and 

methodologies are briefly elaborated in the upcoming sections. 
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1.6 ROLE OF DATA IN REAL-TIME PCR 

 The post-PCR methods such as Melt Curve Analysis, Amplification Curve Analysis 

and HRMA are undergone using rtPCR machines, followed by the PCR experiment using 

thermal-cycler machines. In common, most post-PCR data are collectively known as DNA 

melting curves, amplification curves, and HRMA [1.5.3 – 1.5.5].  

• Amplification curves: PCR generates amplification curves that show the increase in 

fluorescence signal over time, indicating the amount of amplified DNA. This data can 

be used to determine the starting amount of target DNA and to assess the efficiency and 

sensitivity of the PCR reaction. 

• Melting curves: PCR melting curves show the dissociation of double-stranded DNA 

into single strands as the temperature is increased. These curves can be used to 

determine the melting temperature (Tm) of the amplified DNA, which can help to 

identify specific DNA sequences and to detect mutations. 

• HRMA data: HRMA provides information on the melting behaviour of PCR products, 

which can be used to identify and distinguish different PCR amplicons based on their 

melting temperature (Tm). HRMA data can be used to detect mutations, SNPs, and other 

sequence variations in DNA samples. It can also be used to evaluate PCR performance, 

including specificity and sensitivity, and to optimize PCR conditions.  

From the discussion of Vaerman et al., the interpretation of rtPCR results data including 

various numerical data (other than melting curves, amplification curves and HRMA) that grant 

the assessment of various analytical parameters such as linearity, accuracy, precision, 

specificity, and so on [20] to determine the rtPCR instrument’s efficiency, specificity and other 

results. From the post-PCR data, the HRMA data (i.e., melting curves) is promising to do 

analyses and interpretations about the specificity and identity of the amplified product (i.e., 

target DNA) by employing the pioneering ML techniques. Overall, HRMA data plays an 

important role in real-time PCR by providing valuable information on PCR products and 

helping to improve the accuracy and reliability of PCR-based assays. 
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1.7 PREDICTIVE ANALYSIS IN DIAGNOSIS  

Diagnostic is itself an analysis of “What happened?”, “Why happened?” and “Where 

happened?”. There are a lot of advancements are been introduced day by day in healthcare and 

some of them already exist. In such a way, predictive analysis of diagnostic data is not a new 

approach. There are a lot of provisions and support were already been introduced to aid many 

researchers and organizations in boosting their routine work.   

Some examples are,   

• Predicting heart disease using electronic data, medical data, and patient 

information. 

• Predicting various health complexities using medical images like X-rays, CT 

scans, and MRIs. 

• Predicting Cancer with data on tumours (benign or malignant). 

In the field of molecular diagnosis, predicting targets may involve considering several 

factors. Melt curve analysis is one of the steps in diagnosing with PCR and it gives information 

more on the melting nature of a dsDNA. Clinicians/Microbiologists will study the melt curves 

and observe the distinct variations in the graphs thus determine the presence of a specific target 

DNA. It is important to note that only melting analysis would not suffice to confirm any 

presence of target DNA (pathogen) in a patient sample, and additional analysis may require 

such as  

• Sequencing  

• Phylogenetic analysis  

• Multiplex PCR  

• Specific primer/probe design  

• Culture and isolation  

• Serology  

As a result, this project will cover predictive analysis on PCR diagnosis data, 

specifically HRM data, that gives Melt curves and peaks. With relevant feature extraction and 

feature engineering, finally, predictions will be made on classifying pathogen classes using 

various predictive analysis techniques. 
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   1.7.1 MACHINE LEARNING IN DIAGNOSIS   

Machine Learning is a great choice of predictive modelling, and it is a robust 

technology, which has been globally applied in various applications ranging from classifying 

spam mail to predicting diseases. Due to its high compatibility and sound algorithmic resource, 

many real-world problems can be solved using Machine Learning and diagnosis is not an 

exception for applying it.  

Machine Learning over Statistical Modelling  

Both tend to use similar predictive approaches like regression, classification, and clustering, 

but they differ in many ways. 

Statistical modelling is a subset of mathematical modelling where it hugely involves 

assumptions, relationships between random and non-random variables, and estimating 

population with sample data. Choosing statistical modelling as a predictive analysis technique 

will require more understanding of the variables involved in the data and the respective 

relationships between them. Once these perceptions are satisfied, a sensible assumption has to 

be made, to explain the relationships between variables and the resulting prediction. This is 

why statistical modelling is highly preferred when proper interpretation and explanations are 

demanded.  

On the other hand, Machine Learning is also another predictive analysis technique, 

which is a branch of computer science and artificial intelligence, that mainly works on the 

principle of pattern analysis and often introduces challenges in interpreting their learning 

pattern. Compared to statistical modeling ML models can work with large data sets, and it 

rejects the chances of making assumptions on the given data, as it learns from the pattern 

through a weight-based approach. As a result, predictions by these models are powerful and 

more accurate.  

 In the context of performing predictive analysis with HRM data, typically it’s biological 

data which is complicated due to its complexity and high variability in nature because every 

experiment is done and influenced under the clinical environment. So, the Machine Learning 

approach is preferable over statistical modeling, owing to its pattern learning process which 

gives highly accurate results while statistical modeling is best if the characteristics of the data 

should not vary for formulating the hypothesis. Concurrently, several statistical techniques 
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were also used to find insights during the development of this project. Besides both techniques 

have their advantages and limitations [21, 22]. 

 

1.8 OVERALL RESEARCH AIM AND OBJECTIVES 

The overall aim of the project is to create an AI-based framework for analyzing and 

interpreting the HRM data without involving any human assistance. The scope of the project 

starts from the necessary data extraction/acquisition to the end report presentation. 

The objectives can be enumerated as: 

• To setup data acquisition pipelines for extracting and acquiring all the data, necessary 

for the analysis and interpretation. 

• To develop data pre-processing modules for cleaning and transforming acquired data. 

• To conduct research on the domain and the given problem to formulate the best and 

most suitable solution. 

• To conduct relative research on previously undergone research and solutions made for 

problems in the same regard. 

• To formulate an effective approach to applying Machine Learning algorithms to the 

problem. 

• To evaluate and validate results with domain expertise and look for further 

improvisation. 

• To setup modules and components for effective data storing and accessing. 

• To develop supporting software components to aid the workflow. 

• To augment all the components into a single apex system.   
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CHAPTER 2 

EXISTING SYSTEM 

 

The High-Resolution Melting Analysis are being done with the help of specific 

software and existing hardware components. In practice, without these components, HRM 

cannot be done. However, doing manually is more complex and prone to error. Since the term 

“High-Resolution” itself depicts the technology of capturing fluorescence in “High-

Resolution” which is thereby demanding sophisticated and engineered technical components. 

There are already many commercially available instruments and plugin tools used for running 

PCR tests, and most of them are engineered with cutting-edge technology.  

2.1. DATA ANALYSIS SOFTWARE 

2.1.1 QIAGEN’s ROTOR-GENE 

Rotor-Gene Q series are commercial thermal cycle instruments used in many 

laboratories for running PCR tests and analyzing the results using their respective versions of 

plugin software [24].  

Rotor-Gene offers several individual components for analysis like, 

• Melt Analysis 

• HRM Analysis 

• ScreenClust Analysis 

The components come with various names and versions, and among them, QIAGEN’s 

‘Rotor-Gene Q-Rex’ is a default software tool that comes with every Rotor-Gene instrument 

for analyzing the run files of completed PCR tests. Q-Rex offers both Melt and HRM analysis 

in a single package. 

2.1.1 (a) Rotor-Gene Q-Rex Software 

Melt Analysis 

The "Melt Curve Analysis" function of the Rotor-Gene Q software can be used for 

checking the specificity of a reaction, genotyping, and measuring protein stability with 

differential scanning fluorimetry. The function analyses the first derivative (dF/dT) of the raw 
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melting data and identifies peaks in the selected temperature and fluorescence range. The data 

can be used for genotyping by defining "Peak Bins" based on peak characteristics of known 

genotypes [24].  

A 

 

B 

Fig 9, A and B: Rotor-Gene Q-Rex Interface 
Source: QIAGEN’s Q-Rex Software 
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HRM Analysis 

High-resolution melting (HRM) analysis using Rotor-Gene Q software involves 

selecting a data set and defining normalization regions to compensate for variations between 

samples. Genotype names are assigned, and control samples are selected. Results are displayed 

in the “HRM Results” table with automatic identification results for each genotype. Confidence 

levels are assigned to each sample, and a threshold value for the "Confidence Percentage" can 

be defined. The “HRM Normalized Graph” plot displays different curves relative to a selected 

genotype in a “Difference Graph” to emphasize differences between samples. Once the process 

is complete, tables and graphs can be exported [24]. 

 

 

Fig 10: Rotor-Gene Q Rex Interface 
Source: QIAGEN’s Q-Rex Software 

 

2.1.1 (b) Rotor-Gene ScreenClust HRM Software 

Rotor-Gene ScreenClust HRM Software is a powerful tool for the analysis of high-

resolution melting (HRM) data from the Rotor-Gene Q or Rotor-Gene 6000 cyclers. By 

grouping samples into clusters based on their dissociation (melting) curve characteristics, 

Rotor-Gene ScreenClust HRM Software enables applications such as genotyping and mutation 

scanning. The number of clusters can either be defined by the user, if they have known controls 
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for each genotype (supervised mode) or the software can aid the user in determining the number 

of clusters in a sample set (unsupervised mode). 

Rotor-Gene ScreenClust HRM Software provides: 

• Innovative mathematical approach to HRM analysis. 

• Highly accurate identification of genotypes in supervised mode. 

• Automatic detection of new mutations in unsupervised mode. 

• Robust statistics for classifying and interpreting HRM data. 

• Minimal effort and standardized processes for data interpretation. 

HRM analysis on a Rotor-Gene cycler produces raw data that can be further 

analyzed using Rotor-Gene ScreenClust HRM Software. Rotor-Gene ScreenClust 

HRM Software analyses HRM data in 4 steps: 

1. Normalization 

2. Generation of a residual plot 

3. Principal component analysis 

4. Clustering 

HRM curves can have different starting points, therefore the scale of each melt is 

different [25, Fig. 1-A). Rotor-Gene ScreenClust HRM Software only compares samples that 

are on the same scale, which is achieved by normalization. Raw data are normalized by 

applying curve scaling to a line of best fit so that the highest fluorescence value is equal to 100 

and the lowest is equal to zero [25, Fig. 1-B]. Next, the curves are differentiated and a 

composite median curve is constructed using the median fluorescence of all samples. The melt 

traces for each sample are subtracted from this composite median curve to draw a residual plot 

[25, Fig. 1-C). Consecutively, the individual sample characteristics are extracted by principal 

component analysis from the residual plot. The principal component analysis is a well-

established method of data analysis.  
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However, Rotor-Gene ScreenClust HRM Software is the first software application to 

apply principal component analysis to HRM data. The principal component analysis highlights 

similarities and differences in the data and is used to create a cluster plot [25, Fig.1-D].  

 

Figure 11: Data analysis performed in ScreenClust HRM Software (adapted from ScreenClust Software user 

manual [25, Fig. 1]) 

 

Rotor-Gene ScreenClust HRM Software performs clustering (grouping) of data 

according to allele in either supervised or unsupervised mode. Supervised mode is often used 

for SNP genotyping, where the genotypes are known. In supervised mode, the user assigns one 

or more control samples for each cluster and the software classifies (auto calls) all unknown 

samples to clusters according to their characteristics. The unsupervised mode is used when 

there is no or only partial prior knowledge of the genotypes present in the samples. In 

unsupervised mode, the software calculates the optimal number of clusters by itself. This 

feature is an excellent tool for the discovery of new polymorphisms. In addition to the easy-to-

interpret cluster plot, Rotor-Gene ScreenClust HRM Software provides statistical probabilities 

and typicalities in a results table to allow easy comparison of results from different 

experiments. 
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2.1.2 BIO-RAD’S CFX SERIES 

2.1.2 (a) CFX Manager 

The software plots the relative fluorescence unit (RFU) data collected during a melt 

curve as a function of temperature. To analyze melt peak data, the software assigns a beginning 

and ending temperature to each peak by moving the threshold bar. The floor of the peak area 

is specified by the position of the melt threshold bar. A valid peak must have a minimum height 

relative to the distance between the threshold bar and the height of the highest peak. 

• Melt Curve: Viewing the real-time data for each fluorophore as RFUs per temperature 

for each well. 

• Melt Peak: Viewing the negative regression of the RFU data per temperature for each 

well. 

• Well selector: Wells to show or hide the data. 

• Peak spreadsheet: Viewing as a spreadsheet of the data collected in the selected well. 

 

 

Figure 12: Interface of BIO-RAD CFX Manager 

 

 

The Melt Curve Data shows the data from the Melt Curve in multiple spreadsheets, 

including all the melt peaks for each trace. Select one of these four options to show the melt 

curve data in different spreadsheets: 
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• Melt Peaks: Listing all the data, including all the melt peaks, for each trace  

• Plate: Listing a view of the data and contents of each well in the plate  

• RFU: Listing the RFU quantities at each temperature for each well 

• -d(RFU)/dT: Listing the negative rate of change in RFU as the temperature (T) 

changes. This is the first regression plot for each well in the plate 

 

 

Figure 13: Melt Peak Spreadsheet – CFX Manager 
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2.1.3 BIO MOLECULAR SYSTEMS – MIC 

2.1.3 (a) micPCR Software 

The micPCR software offers a Melt Analysis option that enables the determination of 

the peak dissociation temperature (Tm) of a sample from the melt data. This feature is useful in 

detecting non-specific amplicons like primer dimers, thereby serving as a measure of analytical 

specificity for an assay. Melt Analysis can also be applied for genotyping using chemistries 

such as dual hybridization probes. The software displays a graph of the first derivative curve 

plotted as 𝑑𝐹/𝑑𝑇 (y-axis) against temperature (°C, x-axis) for the first target selected in the 

Assays list. Users can set the melt curve threshold to any value and adjust other melting 

parameters available for genotyping. 

 

 

Figure 14: Interface of melt curve graph in Bio Molecular System micPCR software 
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2.1.4 THERMO FISHER – QUANTSTUDIO 

2.1.4 (a) QuantStudio Design & Analysis Software 

 The Melt Curve experiment is used in Thermo Fisher PCR reactions with SYBR Green 

dye to determine the melting temperature (Tm) of the amplification products. Tm is the 

temperature at which 50% of the DNA is double-stranded and 50% is dissociated into single-

stranded DNA. Melt Curve analysis is included in the default run method for any experiment 

type that uses SYBR Green reagents. Multiple peaks in a melt curve indicate additional 

amplification products, often due to non-specific amplification or primer-dimer formation. 

 

 

Figure 15: Interface of Melt curve graph in ThermoFisher QuantStudio software 
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2.1.5 ROCHE – LIGHTCYCLER SERIES 

2.1.5 (a) LightCycler Software  

The LightCycler uses fluorescence measurements to perform melting temperature 

analysis, which determines the melting temperature (Tm) of each sample. The analysis produces 

a Melting Curves chart that shows the downward curve in fluorescence as samples melt and a 

Melting Peaks chart that plots the first negative derivative of sample fluorescent curves to 

display the melting temperature of each sample as a peak. This allows for easier comparison 

between samples. 

 

Figure 16: Interface of Roche’s LightCycler 
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2.2 DEMOCRATIZED SOFTWARE 

2.2.1 DNA-UTAH  

2.2.1 (a) uANALYZE 

 uAnalyze is a web-based tool that analyses high-resolution melting data of PCR 

products. It uses recursive nearest-neighbour thermodynamic calculations to predict a melting 

curve. The tool accepts unprocessed melting data from LightScanner-96, LS32, or HR-1 data 

files or via a generic format for other instruments. A fluorescence discriminator identifies 

low-intensity samples, and the background is removed either as an exponential or by linear 

baseline extrapolation. The precision and accuracy of experimental melting curves are 

quantified, and a temperature overlay is provided to focus on the curve shape. 

 

Figure 17: uANALYZE Interface 
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2.1.4 b) uMELT 

uMelt is a web-based tool used for predicting the DNA melting curves and denaturation 

profiles of PCR products. The user inputs an amplicon sequence and defines thermodynamic 

and experimental parameters including nearest neighbour stacking energies, loop entropy 

effects, and cation concentrations. Using an accelerated partition function algorithm, uMelt 

calculates and visualizes the mean helicity and dissociation probability at each sequence 

position within a temperature range. The predicted curves and profiles display stability and loss 

of helicity with increasing temperature. Results from fluorescent high-resolution melting 

experiments match the predicted melting domains and their relative temperatures, but the 

absolute melting temperatures may vary. uMelt provides a convenient platform for the 

simulation and design of high-resolution melting assays. 

 

Figure 18: uMELT Interface 
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CHAPTER 3 

LITERATURE REVIEW 

 

Untergasser et al. 2021, made the analyses of amplification and melting curves to 

provide valuable information on the quality of individual reactions in quantitative PCR (qPCR) 

experiments and result in more reliable and reproducible quantitative results. The new web-

based LinRegPCR web application provides visualization and analysis of a single qPCR run, 

displaying the analysis results on the amplification curve and melting curve analysis in tables 

and graphs. It also provides a stand-alone back-end RDML (Real-time PCR Data Markup 

Language) Python library and several companion applications for data visualization, analysis, 

and interactive access. The use of the RDML data standard enables machine-independent 

storage and exchange of qPCR data, and the RDML tools assist with importing the data from 

the files exported by the qPCR instrument. 

Moniri et al. (2020) demonstrates that the large volume of raw data obtained from real-

time PCR instruments can be exploited to perform data-driven multiplexing in a single channel 

using machine learning methods. This approach, referred to as Amplification Curve Analysis 

(ACA), was used to multiplex 3 carbapenem-resistant genes in the presence of single targets, 

resulting in an accuracy of 99.1% (N = 16188). To support the analysis, a formula was derived 

to estimate co-amplification occurrence in PCR based on multi-variate Poisson statistics. 

Combining this method with probe-based assays will increase multiplexing capabilities. 

Wisittipanit et al. 2020 used a modified high-resolution DNA melting curve analysis 

(m-HRMa) to classify Salmonella spp. into clusters and a machine learning (dynamic time 

warping) algorithm (DTW) to create a phylogeny tree of Salmonella strains (n = 40) collected 

from homes, farms, and slaughterhouses in northern Thailand. DTW and ms-HRMa clustering 

analyses were able to generate molecular signatures of the Salmonella isolates, resulting in 25 

ms-HRM and 28 DTW clusters compared to 14 clusters from a standard HRM analysis. The 

new Salmonella sub-typing protocol identified five S. Weltevraden subtypes with 

S.Weltevreden subtype DTW4-M1 being predominant. This suggests that transmission of 

salmonellosis in northern Thailand is likely to be farm-to-farm through contaminated chicken 

stool. 
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Athamanolap et al. 2014 made an automated HRM curve classification based on 

machine learning methods and learned tolerance for reaction condition deviations enables 

reliable, scalable, and automated HRM genotyping analysis with broad potential clinical and 

epidemiological applications. 

Roediger et al. 2013. implemented the MBmca package with R, for DNA Melting 

Curve Analysis on microbead surfaces. Particularly, for the use of the second derivative 

melting peaks as an additional parameter to characterize the melting behaviour of DNA 

duplexes. 

 Dwight et al. 2011 created a web-based tool called “uMeltSM” for predicting DNA 

melting curves and denaturation proles of PCR products. It uses an accelerated partition 

function algorithm to calculate and visualize the mean helicity and dissociation probability at 

each sequence position at different temperatures. Results from fluorescent melting experiments 

match the number of predicted domains and their relative temperatures, but current libraries do 

not account for the rapid melting rates and helix-stabilizing dyes used in experiments. 

Smith et al. 2009 defines Methylation of DNA as a common mechanism for silencing 

genes and is increasingly being implicated in many diseases. They describe and validate a 

rapid, in-tube method to quantitate DNA methylation using the melt data obtained following 

the amplification of bisulphite-modified DNA in a real-time thermocycler. The parameters 

derived provide an objective description and quantitation of the methylation in a specimen and 

can be used for statistical comparisons of methylation between specimens. 

 

 

 

 

 

 

 

https://scholar.google.com/citations?user=HFkU-DAAAAAJ&hl=en&oi=sra
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CHAPTER 4 

PROPOSED METHODOLOGIES 

 

 Developing an AI-based framework for interpreting and reporting PCR tests, require 

necessary research and primary attention towards understanding key result analyzing 

techniques such as melt curve analysis and cycle threshold analysis. Therefore, conducting 

proper research is crucial for formulating any robust solution for the problem given. 

4.1 KEY ASPECTS 

 

 

 

The research and methodologies in this project have three main key aspects, namely 

Data Acquisition, Pre-processing, and Feature Engineering. Approaches were made, 

concerning all the above aspects as stated. 

▪ How data acquisition can be performed? 

▪ What type of data is required? 

▪ How pre-processing should be done? 

▪ Is pre-processing necessary? 

▪ How feature engineering can be done effectively? 

The research and methodology of this project predominantly focuses on the above 

stated key aspects, and satisfying all of them, will constitute a larger contribution. Most of the 

work in this project follows, how data is being collected and how it is leveraged, such that 

expected outcomes are brought in. Following that, several methodologies was found and 

applied on various scenarios, which gave deterministic and non-deterministic results. 

Since the project aims in introducing Machine Learning based approach for interpreting 

the results, proper attention has to be made for data acquisition and feature engineering. 

 

Data 

Acquisition 

Pre-

processing 

Feature 

Engineering 
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4.2 PROPOSED METHODOLOGIES 

 The project comprises of various methodologies, proposed and implemented in various 

sections, where each of them provide certain observable results, that are notable and few of 

them demand for future implementation.  

▪ Approach on images of DNA melting signal graphs. 

▪ Approach on co-ordinates of raw fluorescence signal. 

▪ Approach on co-ordinates of DNA melting signal graphs. 

▪ Combination of approach on images and the co-ordinates of DNA melting 

signal. 

The above methodologies are proposed and implemented in this project as part of feature 

engineering process. Moreover, not all the methodologies stated above are truly applicable and 

successful, as some of them are preliminary experiments and trails. Each methodology relied 

on data and respective data acquisition methods are also covered in the following sections. 
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CHAPTER 5 

APPROACH ON IMAGES OF DNA MELT SIGNALS 

 

 As discussed earlier, melt curves are interpreted by visual inspection of their respective 

graphs that is the result of the rtPCR assay. Experts then examine every feature in the graph 

and draft their report/interpretation accordingly.  

In the onset of this project the type of data that is more suitable for developing the AI 

framework was unknown. Hence, initially the available images of the melt curve graph for the 

different patient sample were used as the source data for developing the algorithm.  

  

Figure 19: DNA Melt data report generated by thermal cycler machine 

Reports are the only initial source of data, where information on melt data are available. 

These reports are created by commercially available thermal cycler machines, after performing 

the interpretation by clinicians/microbiologists. Since the data is available in the form of 

images, image processing techniques are performed as an initial step, to explore the available 

image source. 
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5.1 IMAGE PROCESSING  

 Image Processing is a standard technique, widely used on various applications like 

computer vision, video processing, remote sensing etc., to extract and restore valuable 

information in the image by the use of algorithms. Image processing has various applications 

like image sharpening, image restoration, image reconstruction, image reformatting, image 

generation and so on, for enhancing the existing image resource.  

In this context, as the data available from the physical paper reports, it is likely to have 

poor quality and there are more chances of having noises. To suppress such constraints, image 

processing is a promising solution. There are many libraries and packages, that are readily 

available for image-processing tasks, and among those, OpenCV is a familiar image-processing 

library, predominantly used on many image-based tasks and projects. Likewise, OpenCV has 

been used in this methodology with Python as a code language tool.  

Pre-processing with OpenCV, provides many image processing methods, to manipulate 

images in a desired manner. Such a way to separate or distinguish the melt signals from the 

given plot, image masking can be performed.  

Image masking is a simple technique, where only the desired pixels are taken for 

consideration, ignoring the background or unwanted pixels by creating appropriate masks.  

 

 

    

 

 

Figure 20: Colour mask to track yellow colour in the input image 
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Figure 21: Melt signal images scanned and cropped from PCR reports 

After collecting several report files, images of melt signals are scanned and segmented 

individually. The signal plots in the reports are partially clear and some of the signals are pale 

in colour. Most of the images, have white background that possess the RGB value of 

(255,255,255). Masking has to be done in such a way to remove those white coloured pixels 

from the images, so that only the coloured pixels are remained for consideration.  

 

 

 

 

 

 

 

 

Figure 22: Image masking performed on melt signal images 
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Performing image masking on the DNA melt images, has removed all the white 

background pixels, keeping only those pixels of melt signals. However, few sections in the 

picture such as x-axis and y-axis legends, labels, threshold line etc., (fig. 21)) were not 

removed. Hence, there is a requirement of additional techniques to be applied for removing 

such unwanted information.   

 

 

 

 

 

 

 

Figure 23: Cropping the images to retain only melt signals 

 

Cropping the images helped to retain the target area of the input images. As a result, all 

the unwanted sections like labels, x-axis and y-axis are removed. However, the melt signals in 

the images are still noisy and due to the poor pixel quality of the images and the inaccuracy of 

the edges. Additionally, images in the reports were compressed, which is entirely not as good 

as image formats like SVG and PNG.  

On the other hand, information on the numerical values seems to be missing (say Tm). 

Unlike problems like object detection, which has the aim of identifying the desired object at 

any position, at any size, at any colour irrespective of numerical information (say the exact size 

of the object in inches or centimetres), image processing is unable to assess such attributes 

(numerical).  
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RESULT AND DISCUSSION 

 The experiment on the images of melt signals has introduced image processing 

methods, with the aim of extracting important information from the signals. The experiment 

focuses on creating mask for such melt signals, which as a result, background is separated. 

Despite this happens, the process has not seemed to be satisfying several requirements, such as 

numerical attributes of the signal, sound pixel quality etc., 

The image-based approach, as a result, could capture and partially enhance the melt 

signals from the image, but could not assess any other import features, required for analysis. 

Though great-quality images are acquired, extracting/assessing the numerical attributes is 

challenging and that may introduce methods like plot digitizing. 

 Explorations with respect to the above constraints have to be done, and a proper 

substitute or applicable alternate method needs to be introduced. Instead of acquiring physical 

reports, exploration shall be made on the software components of the thermal cycler machines, 

so that, any new data sources or any alternative in this regard can be found.  

 

CONCLUSION 

 Approach on images of DNA melt signals, has provided critical results, that demand 

further implantation and exploration.  The prevailing approach lacks areas like feature 

extraction and data acquisition, where the source of data is not intact and with that source, 

formulating a robust foundation for the problem is difficult. 
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CHAPTER 6 

APPROACH ON CO-ORDINATES OF RAW 

FLUORESCENCE SIGNAL  

 

 In the previous approach, physical paper reports were the initial source of data, where 

image processing techniques are applied and respective results are observed at the end. It was 

found that, there were no reliable data source for extracting information on melt signals, and 

applying image-based techniques are only relevant with several limitations. The approach is 

not feasible, because of the following reasons, 

• Unreliable Data 

• Time consuming (Involves much pre-processing) 

• Hard to differentiate signals within themselves 

• Involves plot digitizing 

• Could not cover numerical features 

Concerning all these drawbacks, further exploration has been performed in this successive 

approach to address the above stated constraints.  

 The science behind DNA melting signal, is a light reaction, called ‘fluorescence’. 

Fluorescence is a process that belongs to the ubiquitous luminescence family in which sensitive 

molecules produce light from electronically excited states created by a physical (for e.g., light 

absorption), mechanical (friction), or chemical mechanism. The DNA melt signals are actually 

this fluorescence emission, emitted by fluorescent dyes during the PCR run. Such emissions 

are captured and recorded by thermal cycle machines in real time.  

The captured fluorescence signal is then plotted against the temperature, which as a 

result, signals are produced. Like all other signals (say sin waves, spike waves etc.,) melting 

signals also have co-ordinates (x, y co-ordinates), that can be plotted in a cartesian plane. 

Exploring the thermal cycler machines and its corresponding software plugin, it is discovered 

that, such co-ordinates can be extracted and exported into various file formats. As a result, any 

melting signals can be plotted manually with any data visualization tool, without depending on 

the software plugin of thermal cycler machines. 
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Text X Y Text X Y Text X Y Text X Y 

1: 0400437684  70 56.25 5: 0400437685  70 77.52 9: 1000675295  70 48.9 13: 1000675298  70 78.69 

1: 0400437684  70.2 55.43 5: 0400437685  70.2 76.74 9: 1000675295  70.2 48.2 13: 1000675298  70.2 77.87 

1: 0400437684  70.4 54.61 5: 0400437685  70.4 75.95 9: 1000675295  70.4 47.5 13: 1000675298  70.4 77.06 

1: 0400437684  70.6 53.84 5: 0400437685  70.6 75.30 9: 1000675295  70.6 46.9 13: 1000675298  70.6 76.38 

1: 0400437684  70.8 53.07 5: 0400437685  70.8 74.69 9: 1000675295  70.8 46.1 13: 1000675298  70.8 75.71 

1: 0400437684  71 52.31 5: 0400437685  71 74.07 9: 1000675295  71 45.4 13: 1000675298  71 75.14 

1: 0400437684  71.2 51.47 5: 0400437685  71.2 73.45 9: 1000675295  71.2 44.6 13: 1000675298  71.2 74.48 

1: 0400437684  71.6 49.75 5: 0400437685  71.6 72.19 9: 1000675295  71.6 43.0 13: 1000675298  71.6 73.15 

1: 0400437684  72.2 46.57 5: 0400437685  72.2 69.88 9: 1000675295  72.2 40.0 13: 1000675298  72.2 71.03 

 

Table 3: Sample data - co-ordinates of raw fluorescence 

The Table 3 shows the tabular representation of fluorescence intensity, captured in real 

time. The data specifies the ‘X’ and ‘Y’ co-ordinates of raw fluorescence signals, where ‘X’ 

denotes the temperature and ‘Y’ denotes the fluorescence intensity. The ‘Text’ column 

represents the name/reference id of the sample, which is being loaded in the wells. It is also 

clearly observable that, the ‘X’ column is common for all the ‘Y’ (fluorescence intensity) 

columns, which is the temperature value, that range from 70ºC to 90 ºC.  

 

 

Figure 24: Raw fluorescence signal plotted using matplotlib 

 



 

61 
 

The shape of raw fluorescence signal is different from the DNA melting signal. In fact, the 

DNA melting signals are produced after applying mathematical function on the raw 

fluorescence signals. And the mathematical function is the first negative derivative of raw 

fluorescence intensity.  

 

− 
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑦

𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥
=  − 

Δ𝑦

Δ𝑥
=  −

𝑑𝑦

𝑑𝑥
     (1) 

    

 There raw fluorescence signal has several properties and also provide certain 

information on the melting characteristic of a DNA sample. According to the method described 

by Smith et al. the team stretched out the mathematical method to find the start and end of 

melting temperature from a fluorescence signal. The raw fluorescence signal has an inverse 

proportion with the temperature, that, as temperature increases, fluorescence decrease. Such 

decreasing nature of fluorescence has some properties and it can be distinguished in three 

different phases. 

 

 

 

 

 

 

 

 

Figure 25: Properties of raw fluorescence signal  
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In the fig. 25, a standard fluorescence signal has been divided into three different 

phases, where each illustrate appropriate properties of raw fluorescence signal. According to 

the study, the first property of a fluorescence signal is that, it follows linearity in the beginning, 

that is, every raw fluorescence signal follows a linearity in its initial stage, where the decrease 

against the increasing temperature will be linear for specific time interval. 

 Usually, fluorescence-based PCR test uses fluorescent dyes, that bound to the double 

strand DNA. These fluorescent dyes follow a mechanism that, they do not fluoresce when they 

bound to double strand DNA. When the DNA sample is heated with a gradual increase in 

temperature, the double strand DNA will be separated into a single strand DNA. As a result, 

the fluorescent dye bound to the double strand DNA will fluoresce. Such state, is often called 

as melting state, where half of the DNA will be separated into single strand DNA. Until this 

process happens (melting), there will be linear decrease in fluorescence intensity, which cannot 

be avoided, as heating happens in a continuous increasing manner. Hence, there will be some 

amount of fluorescence release is observed, which is termed as Phase 1. 

The Phase 2 describes the melting stage, where the fluorescence release is aggressive, 

as the DNA sample is being converted into single strand DNA. The magnitude of fluorescence 

will be high, that cause the sudden massive decrease in the fluorescence intensity. The Phase 3 

is the final stage, where the fluorescent dye gets saturated and no longer fluoresce will happen 

as the dye gets exhausted. 

With the above information, raw fluorescence signals can be processed in more 

significant manner along with the methods described by Smith et al., to find the start and end 

of melting temperature from a fluorescence signal. There are several mathematical algorithms 

are followed and applied in this approach, to extract the earlier stated features like, temperature 

at which the melting started and the temperature at which the melting ends or saturated. Distinct 

mathematical and statistical algorithms like Linear regression and line fitting methods are also 

introduced and applied in this methodology.  
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The algorithm to apply line fitting method in the raw fluorescence signal is followed as, 

ALGORITHM 1: ALGORITHM TO APPLY LINE FITTING METHOD IN THE RAW FLUORESCENCE 

SIGNAL USING LINEAR REGRESSION 

 

 Input: Data frame and the index of the required column 

 Output: Straight line extrapolated and fitted on the features of the data 

1 Importing necessary libraries: sklearn, numpy, matplotlib, pandas 

2 Initialization of objects: create an empty list object ‘List1’. 

3 FUNCTION predict (data frame, index of column) 

4  X ← create an array of shape (10,1), taking the first 10 elements of temperature column 

from the data frame. 

5  Y ← create an array of shape (10,1), taking the first 10 elements of given column index 

from the data frame. 

6  Fit a linear equation on the arrays X, Y using sklearn.linear_model.LinearRegression() 

7  Prediction ← extrapolate the temperature column in the data frame using the above 

fitted linear equation. 

8  RETURN Prediction 

9 END FUNCTION 

10 FOR j = 1 TO len (data frame.columns) DO 

11  List1 ← Call the predict function for each column and append the results to the list 

12 END FOR 

13 FOR k = 1 TO len (data frame.columns) DO 

14  Plot the predictions against the actual values for each column using matplotlib.pyplot 

15  Create a new plot for each column 

16  Plot the actual values for the given column 

17  Plot the predicted values for the given column 

18  Show the plot 

19 END FOR 

 

The above algorithm illustrates how to extrapolate a straight line to the temperature 

values in the data set using Linear Regression. Following that, the algorithm starts by capturing 

the initial linear phase of the signal by choosing the first n (10 (a random choice, must be a 

least figure)) numbers.  

 

 

 

 

 

Figure 26: First 10 linear points of the fluorescence signal 
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Figure 27: Fitting a straight line along the fluorescence signal’s linear phase 

 

The fitted straight line is an assumption that, the fluorescence intensity is decreased 

linearly throughout the temperature increase and it is denoted as “F(T)max”. This F(T)max is 

the function of temperature, and the same has been described in the above algorithm as 

‘FUNCTION predict’. The fluorescence signals are denoted as F(T)obs, which is also treated 

as a function of temperature, but this denotation is not appropriate, as the fluorescence signals 

are not computed by a mathematical function, and it is wholly depends on various parameters, 

combining that, it is observed in real-time. For the discussion, it is denoted as such, and it is 

simply the observed fluorescence values.  

To compute the melting phase of the raw fluorescence signal, the following formula 

can be applied, 

   F(T)melt = F(T)max – F(T)obs    (2) 

 

Again F(T)melt is considered as a function of temperature, but here it is expressed as 

the difference between the assumed and observed values of fluorescence signals. Fitting an 

extrapolation line helps to differentiate fluorescence release caused by DNA melting, and the 

release that is caused by heating. 
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On clearly observing the values of fluorescence intensity, it is obvious that, the values 

are ranging from 0 to 100, which can also be furtherly processed with pre-processing 

techniques like normalization. Using appropriate mathematical functions, normalization can be 

achieved. 

ALGORITHM 2: ALGORITHM TO NORMALIZE THE RAW FLUORESCENCE SIGNAL 

 

 Input: Data frame and the List1 from the Algorithm 1 (extrapolated values) 

 Output: Normalized values of fluorescence signals 

1 Importing necessary libraries: numpy, pandas  

2 Initialization of objects: create an empty list object ‘List2’, ‘List3’. 

3 FOR i = 1 TO len (data frame.columns) DO 

4  FOR x, y IN zip (List1[i-1], data frame.iloc[:,i]) DO 

5   List2 ← perform element wise division (y/x) and append to the list 

6  END FOR 

7  List3 ← append all the lists after computing the element wise division for all the 

columns. 

8 END FOR 

 

 The algorithm takes data frame (fluorescence signals co-ordinates) and the 

extrapolated values computed in Algorithm 1 as inputs, to perform normalization. The 

mathematical notion implemented in the algorithm is the ratio of observed values to the 

extrapolated values.  

  Normalization = 
𝐹(𝑇)𝑜𝑏𝑠

𝐹(𝑇)𝑚𝑎𝑥
    (3) 

 

 

 

 

 

 

 

 

Figure 28: Fluorescence signals after performing normalization 
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The fig. 28, shows the normalized raw fluorescence signals, but the results are not as 

expected. On clearly observing the plots, there are some noises, being introduced in the end, 

i.e., between 85ºC to 90ºC temperature range. This is an error, and it is not a properly 

normalized fluorescence signal. In fact, the algorithm, on a specific stage has introduced an 

outlier value, which has to be backtracked to fix such erroneous.  

On backtracking the error, it was observed that, the extrapolated values, being fitted 

along the linear phase of fluorescence signal, is intersecting the observed signal on a specific 

point (fig. 29).  

 

Figure 29: Erroneous intersection spotted in the signals  

The extrapolated values fitted along the linear phase, should not intersect the observed values. 

This is because, normalization makes the fluorescence intensity as percentage or the ratio of 

observed values to the extrapolated values. On performing the element wise division, as 

described in Algorithm 2, observed and extrapolated value on the intersected point will be 

same, and the resultant ratio will be a whole number or a fraction that is near to a whole number. 

As a result, the intersection produces outlier and will be reflected in the resultant signal (Figure 

3.12).  

Moreover, on further analysis, it is also observed that, the linear phase in the observed 

fluorescence signal is narrow for fig 29 A, B, C, D as compared to fig 29 E and extrapolating 

a linear line on such phase will definitely intersect the fluorescence signal. This may be due to 

the reason that, the signals are actually missing the linear phase, as the has the temperature is 

staring from 70ºC. Capturing the linear phase is crucial for this approach, and lacking on such 

B A C

D E
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attribute, may lead to erroneous results. These issues can be fixed by acquiring data from earlier 

temperature values (say 50 ºC), so that, linear phase of the fluorescence signals can be captured.  

 

 

 

 

 

 

 

Figure 30:  Raw fluorescence signal – Temperature range (30ºC to 90ºC) 

 

Once the signals are captured with linear phase, Algorithm 2 can be applied hence, such that 

normalization can be performed properly.  

 

Figure 31: Normalized fluorescence signals 

In (fig 31), windowing method has been applied, such that, only the required the range of 

temperature values and its corresponding fluorescence intensities will be taken. Following 

that, only the temperature range 70ºC to 90ºC has been fixed as a window size.  
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Raw fluorescence signals are taken into consideration, mainly to extract information on the 

take-off temperature value and the touch-down temperature value. This information is 

phenomenal, as it provides additional information like take-off and touch-off values, which can 

be considered as a valuable characteristic or a feature of the DNA melt signal.  As far as, all 

the methods applied in this approach are stated and derived by E. Smith et al.,[1], as a part of 

fluorescence signal processing (FSP) to extract desired information for the analysis. The 

methods were described by E. Smith et al., were performed on different context, with different 

samples, and following the same, has introduced several practical exceptions. 

The next section of this approach will be an extended approach of E. Smith et al., whom 

described the imaginary/extrapolated line fitting on the fluorescence signals. To capture such 

take-off and touch down temperature values, normalized fluorescence signals are used in the 

further experiments where the same line fitting method will be performed in a different manner. 

This time the existing Algorithm 1 can be used with some additional steps. In Algorithm 1 

extrapolation has been done on the raw fluorescence signals, especially on the linear phase, by 

taking first n least observations. As a change, the same steps can be performed in a reciprocal 

way, to extrapolate the same straight line for the least n elements from the end of the signal 

(saturated part). This process as a result, will provide two lines extrapolated on both the ends 

(top and down) of the normalized fluorescence signals (fig 31). 

 

 

 

 

 

 

 

Figure 32: Extrapolating imaginary lines on both the ends 

 

 



 

69 
 

ALGORITHM 3: ALGORITHM TO RECORD TAKE-OFF AND TOUCH-DOWN TEMPERATURE VALUES IN 

NORMALIZED RAW FLUORESCENCE SIGNAL 

 

 Input: Normalized fluorescence values computed in Algorithm 2 

 Output: Take-off and Touch-down temperature values. 

1 Importing necessary libraries: numpy, pandas  

2 FUNCTION predict (normalized fluorescence data, index of column) 

3  X1 ← create an array of shape (10,1), taking the first 10 elements of temperature values 

from the normalized fluorescence data 
4  X2 ← create an array of shape (10,1), taking the last 10 elements of temperature values 

from the normalized fluorescence data 
5  Y1 ← create an array of shape (10,1), taking the first 10 elements of given column index 

from the normalized fluorescence data. 

 6  Y2 ← create an array of shape (10,1), taking the last 10 elements of given column index 

from the normalized fluorescence data. 

 7  Fit a linear equation on the arrays X1, Y1 and X2, Y2 using 

sklearn.linear_model.LinearRegression() 

8  Prediction1 ← extrapolate the temperature column in the data frame using the fitted 

linear equation for X1 and Y1 arrays. 

9  Prediction2 ← extrapolate the temperature column in the data frame using the fitted 

linear equation for X2 and Y2 arrays. 

10  RETURN Prediction1, Prediction2 

11 END FUNCTION 

13 FOR i = 1 TO len (Normalized fluorescence data frame.columns) DO 

14  Extrapolated_values ← predict(Normalized fluorescence dataframe, i) 

15  FOR x, y IN zip (Extrapolated_values [0][i-1], data frame.iloc[:,i]) DO 

16   Take0ff ← compare the extrapolated values and observed fluorescence values to 

detect the point of deviation.  

17  END FOR 

18  FOR x, y IN zip (Extrapolated_values [1][i-1], data frame.iloc[:,i]) DO 

19   TouchDown ← compare the extrapolated values and observed fluorescence 

values to detect the point of convergence. 

20  END FOR 

21 END FOR 

 

The above algorithm describes a function to compute the extrapolated values for both 

the ends of a normalized fluorescence signal, and iterates through each column (signals) of 

normalized fluorescence data frame, such that, it could compare the actual signal and the 

extrapolated values, to detect the point of deviation and the point of convergence (fig 33).  The 

resultant touch-down and take-off values are considered as the starting temperature point and 

the ending temperature point, and such points shall be cross validated with the corresponding 

DNA melting signal.  
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Figure 33: Mapping the take-off & touch-down points with Normalized fluorescence signal in DNA Melt 

signals. 

The results of the algorithm looks relvant, as the take-off and touch-down points are 

cross validated with the corresponding DNA melting signals. These points can be taken as 

features for analysis, and can be applied on successive samples, especially on the raw 

fluorescence signals. By the way, this algorithm works as a part of feature engineering process.  

For calculating the melting temperature, same raw fluorescence signal co-ordinates can 

be processed further, to produce DNA melting signal. As stated earlier, DNA melting signals 

A

B
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are actually produced after applying a differential equation on the co-ordinates of raw 

fluorescence signals. The differential equation (1), captures the rate of change of fluorescence 

intensity for every change in temperature values. The negative derivative has been taken, 

concerning the order of observations (as the temperature values are in ascending order). As a 

result, the melting phase in the raw fluorescence will be reflected as a peak (fig 33 B), which 

is more appropriate for interpretation. 

The exceptions of the algorithm is quite observable that, where the algorithm finds it 

difficult to capture further more additional informations. When it come to those signlas, which 

has double peaks and double attributes (depends on primers) the algorithm could not pick the 

additional information on successive peak, which is prominent for several type of pathogen. 

Not all the pathogen would be expected with a single peaked DNA melting signals, where 

different pathogens markers will be captured with different set of primers designed dedicatedly. 

Such variations in primers could result in differernt DNA melting signals, and it is important 

that, capturing all the information is prominent. 

 Despite the algorithm works fine, there are also several scenarios where the algorithm 

fails to provide expected results. As the HRM data is prone to high variability, applying the 

same algorithm on different samples, does not work, and it follows certain exceptions.  
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Figure 34: DNA melting signals with double peaks and its corresponding raw fluorescence. 

 

 With the algorithm using raw fluorescenc curve, capturing the melting phase can be 

achieved in an overall sense, but could not provide any further detailing on additional peaks, 

which is being introduced along with the major peak. This will lead to, lack of information 

extraction, as the additional peaks also provides additional relavant information, which is a 

valuable feature, that has to be considered during interpretation. Since the algorithm could not 

do this, further implentation on capturing those additional information has to be performed. 
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RESULT AND DISCUSSION 

 Data of Raw fluorescence signal has been acquired in this methodology as a primary 

data, and processed respectively using several line fitting techniques like linear regression and 

extrapolation. As a result, linear phase of fluorescence intensity has been captured and 

compared with actual observed signal, to differentiate melting phase, from the raw fluorescence 

signal. Furtherly data pre-processing techniques like normalization has also introduced to 

normalize the fluorescence intensity in a range of 0 to 1, and performed further line fitting 

methods on both the end of the resultant normalized curve to detect take off and touch down 

points.  

 

CONCLUSION 

 The experiment on raw fluorescence signals, has provided some significant results on 

single peaked DNA melting signal, but failed to work with double peaked signal, as it could 

not capture any additional information on additional peaks, which is being introuced along the 

previous peak. It is necessary to employ some alternate processing technique to capture all 

relavnt information of peaks as much as possible. Efficient and gold standard pre-processing 

techniques like signal processing methods, has to be trialed, and corresponding results must be 

captured and evaluated, which is being covered in the upcoming chapters. 
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CHAPTER 7 

APPROACH ON CO-ORDINATES OF DNA MELTING 

SIGNAL   

 

 In the previous chapter, processing raw fluorescence signals has several short comes, 

where it could only extract partial information from DNA melting signals. In this chapter, 

alternative methods to processing raw fluorescence signals will be introduced, and its 

corresponding results will be observed and evaluated duly. As stated earlier, DNA melting 

signals can be produced after applying a differential function over a raw fluorescence signal, 

such that peaks will be formed, denoting the melting phase. Such a way, raw fluorescence 

signals will be converted into melting signals and further processing steps will be covered in 

this chapter, to extract features from melting signals.  

 

7.1 MELT CONVERSION 

 Converting a raw fluorescence signal into a melting signal involves a gradient function, 

which takes the first negative derivative of fluorescence over the temperature values. The 

gradient function simply captures the rate of change of fluorescence intensity over each change 

happens in a temperature value. This as a result will produce signals with peaks, which is so 

called Melt curve or Melting signal.  

ALGORITHM 4: ALGORITHM TO CONVERT RAW FLUORESCENCE SIGNAL TO MELTING SIGNAL 

 

 Input: Raw fluorescence signal values 

 Output: Melting signal values 

1 Importing necessary libraries: numpy, pandas  

2 Initialization of objects: create an empty dataframe object to store melting signal values. 

3 FOR i = 1 TO len (data frame.columns) DO 

4  gradient ← Calculate the rate of change for fluorescence intensity and temperature 

values using np.gradient() and multiply with np.negative 

5  Melting Signal ← append each signal columns of raw fluorescence to its corresponding 

columns of Melting signal data frame. 

6 END FOR 
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Figure 35: Comparison for manually converted melting signal(A) to machine converted melting signal(B). 

 

Converting raw fluorescence signals into melting signals, provide similar results, as 

shown in the (fig 35). Though there are still some differences are observed, with respect to the 

smoothness of the signal. The machine converted melting signals (fig 35 B) are smooth and 

did not provide any noise at either the ends, whereas, manually converted signals (fig 35 A) 

introduce noises, which makes a slighter difference from the original machine converted 

signals. The machine may apply some noise reducing filters, that reduce the excess noise in the 

melting signals.  

Harnessing raw fluorescence signals furtherly, throughout the approach, paves way for 

common and generalized solution, since raw fluorescence data can be extracted from any 

thermal cycler machines of any manufactures. Following the same will provide a universal 

solution, and hence can be applied anywhere, with any machines.  

Commercially available thermal cycler machines, uses several signal smoothening 

algorithms like Savitzky-Golay algorithm, moving average algorithm, and ensemble average 

etc., to smooth the DNA melting signals. Despite signal smoothening, the machine also 

performs data interpolation and some of the familiar algorithms are spline, radial basis function, 

nearest interpolation etc. 

Interpolation and smoothing are two related concepts in signal processing that are used 

to enhance or modify signals. Interpolation refers to the process of estimating values of a signal 

at points where it has not been sampled, based on the values of the signal at nearby sampled 

points. This is typically done using mathematical algorithms, such as linear interpolation or 
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spline interpolation. The purpose of interpolation is to increase the sampling rate of a signal, 

or to fill in missing or corrupted data points. 

Smoothing, on the other hand, refers to the process of reducing the noise or 

irregularities in a signal by averaging adjacent data points or using a filtering algorithm. 

Smoothing can be used to remove high-frequency noise or artifacts in a signal, or to remove 

short-term fluctuations that are not relevant to the underlying trend of the signal. 

Interpolation and smoothing are related in that they both involve modifying a signal to 

improve its quality or make it more useful for analysis or processing. In some cases, smoothing 

may be applied before interpolation to remove noise or irregularities in the signal, while in 

other cases interpolation may be applied before smoothing to fill in missing data points. Both 

techniques are widely used in signal processing and are essential for many applications, such 

as image processing, audio processing, and data analysis. 

Interpolating method depends on the type of data being processed and the specific requirements 

of the application. Some common interpolating methods used in signal processing include: 

1. Linear interpolation: This method involves connecting two adjacent data points with a 

straight line and estimating the value of the signal at a new point based on the position 

of that point on the line. 

2. Cubic spline interpolation: This method involves fitting a cubic polynomial curve to 

the data points in a local region, which provides a smoother estimate of the signal at the 

new point. 

3. Fourier interpolation: This method involves using the Fourier transform to estimate the 

signal at a new point based on its frequency content and the values of the signal at 

neighbouring points. 

4. Akima interpolation: This method uses a modified cubic spline method that is 

specifically designed to handle noisy or irregular data. 

5. B-spline interpolation: This method involves fitting a spline curve to the data points 

using a set of basis functions known as B-splines. 

7.2 SPLINE AND SAVGOL FILTER 

Spline and Savitzky-Golay (Savitzky-Golay) filter are two popular methods used for 

smoothing data. 
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Spline is a mathematical technique that is used to interpolate or smooth data points by fitting a 

piecewise polynomial curve through the data points. The curve is designed to have a smooth 

appearance by minimizing the curvature of the function. The resulting curve can be used to 

interpolate between data points or to smooth out noise or irregularities in the data. 

On the other hand, the Savitzky-Golay filter is a technique used for digital signal processing. 

The filter is designed to smooth out noisy data by fitting a series of polynomial functions to the 

data points. The polynomial functions are then used to calculate the smoothed values of the 

data points. The filter is designed to minimize the impact of the noise on the resulting smoothed 

values by fitting a polynomial curve of a certain order to the data. 

The key difference between the two methods is that spline is designed to interpolate between 

data points and smooth out noise, whereas the Savitzky-Golay filter is designed to smooth out 

noise while preserving the shape of the data. In other words, spline can introduce new data 

points that were not present in the original data, whereas SavGol filter only uses the existing 

data points. In general, if the goal is to preserve the shape of the data, SavGol filter may be a 

better choice. On the other hand, if the goal is to interpolate between data points and smooth 

out noise, spline may be a better choice. 

7.3 B SPLINE 

B-spline representation of a 1-D curve is a mathematical technique that approximates a 

smooth curve using a set of control points and a set of piecewise polynomial functions known 

as basis functions. The degree of the basis functions determines the degree of the B-spline 

curve, and the knot vector determines the locations of the knots that connect the basis functions. 

To evaluate a point on the B-spline curve, the basis functions are computed at that point and 

weighted sums of the control points are computed using those basis functions. B-splines have 

the advantage of being able to approximate complex shapes using a small number of control 

points, and they can be used to interpolate or approximate a given set of data points. 

B-splines are widely used in computer graphics, computer-aided design (CAD), and other 

fields that require precise and efficient curve and surface modeling. They offer several 

advantages over other curve representations, including their flexibility, efficiency, and ability 

to approximate complex shapes with a relatively small number of control points. To smoothen 

the converted melting signal from the raw fluorescence signal, spline functions has been used.  
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ALGORITHM 5: ALGORITHM TO SMOOTH THE CONVERTED MELTING SIGNAL FROM RAW 

FLUORESCENCE SIGNAL 

 

 Input: Converted Melting signal values 

 Output: Smoothened Melting signal values 

1 Importing necessary libraries: numpy, pandas, scipy.interpolate 

2 Initialization of objects: create an empty dataframe object to store smoothened melting signal 

values. 

 Interpolated temperature ← Interpolate the temperature values using np.linspace with a  

constant multiplying to the actual number of the temperatures values.   

3 FOR i = 1 TO len (data frame.columns) DO 

4  Interpolated Signals ← Interpolate the signal values with the corresponding 

interpolated temperature values using scipy.interpolate.splrep() with a ‘s’ value. 

5  Smoothened Melting Signal ← append each signal columns of raw fluorescence to its 

corresponding columns of Melting signal data frame. 

6 END FOR 

 

 

Figure 36: Before (A) and After (B) applying smoothening filter. 

After applying smoothening filter in the signal, it looks fine and there are no noises observed 

as compared to the previous one (A). The spline function smoothens the signal with the use of 

‘S’ parameter, which is a smoothing condition. The amount of smoothness is determined by 

satisfying the conditions:  

∑(𝑤 ∗ (𝑦 − 𝑔)) ∗∗ 2 ≤ 𝑠 

where g(x) is the smoothed interpolation of (x,y). I can be controlled to make a trade-off 

between closeness and smoothness of fit. Larger s means more smoothing while smaller values 

of s indicate less smoothing. Recommended values of s depend on the weights, w. If the weights 
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represent the inverse of the standard-deviation of y, then a good s value should be found in the 

range  

(𝑚 − √(2 ∗ 𝑚), 𝑚 + √(2 ∗ 𝑚))  

where m is the number of datapoints in x, y, and w.  

Default:  

𝑠 = 𝑚 − √(2 ∗ 𝑚) 

if weights are supplied. s = 0.0 (interpolating) if no weights are supplied. 

 

 

Figure 37: Machine converted melting signal (A) and manually converted melting signal (B) by applying 

smoothening filter. 

 

Selecting an appropriate value for ‘S’ looks prominent, and the impact of such parameter is 

variable as data changes. Using a constant ‘S’ value to the spline function will not give a 

generalized solution, and smoothness applied to the signal must be proportional and dynamic. 

This also becomes a hindrance for feature extraction, as over smoothness cause, over 

smoothening the important curves and details, which as a result brings lack of performance. 

Finding a suitable ‘S’ parameter for each set of data is challenging, and making a dynamic ‘S’ 

value requires more attention. Despite proper hyper parameter has chosen, performing a 

manual conversion involves certain risk of losing the authenticity of data, since the machine-
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made DNA signals will undergo certain stages, which follows some technical process, that 

could only handle efficiently by dedicated PCR machines. 

A PCR machine converts raw fluorescence to melt data by involving the following steps: 

1. Raw fluorescence data acquisition: The instrument measures the fluorescence signal 

during the PCR reaction and generates a raw fluorescence data file. 

2. Background correction: The machine subtracts the baseline fluorescence level from 

the raw fluorescence data to correct for any background signal. 

3. Normalization: The fluorescence signal is normalized to a reference dye signal to 

account for any variations in fluorescence intensity caused by differences in sample 

concentration or dye binding. 

4. Melting curve generation: The normalized fluorescence data is plotted against the 

temperature of the reaction to generate a melting curve. The software uses an algorithm 

to smooth the curve and calculate the first derivative of the curve. 

5. Baseline subtraction: The instrument calculates the baseline of the melting curve by 

fitting a straight line to the lowest fluorescence signal values. 

6. Tm determination: The machine identifies the temperature at which 50% of the 

double-stranded DNA has dissociated by calculating the maximum of the first 

derivative of the melting curve. 

7. Melt curve analysis: The machine can also perform a derivative analysis on the melting 

curve to identify the number of melting domains or different DNA sequences present 

in the sample. This information can be used to identify the presence of mutations or 

genetic variations in the sample. 

8. Data output: The machine finally, outputs the melt curve data in various formats such 

as a graph, a table of Tm values, and a report containing detailed analysis results. 

 

7.4 BASELINE SUBTRACTION 

Baseline subtraction is a critical step in converting raw fluorescence data to melt data. The 

purpose of baseline subtraction is to correct for any background signal and to ensure that the 

fluorescence signal represents the DNA melting signal. 

Performing baseline subtraction can be achieved using the following method: 
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1. Baseline region selection: The PCR machine selects a region of the melting curve that 

represents the baseline fluorescence level. This region is usually chosen as the region before 

the start of the DNA melting transition, where the fluorescence signal is relatively stable. 

2. Straight line fitting: Then it fits a straight line to the baseline region of the melting curve 

using linear regression analysis. 

3. Baseline subtraction: The machine subtracts the values of the fitted straight line from the 

entire melting curve to obtain the baseline-subtracted curve. By fitting a straight line to the 

baseline region of the melting curve and subtracting it from the entire curve, the baseline-

subtracted curve is obtained. This ensures that the fluorescence signal represents only the DNA 

melting signal and not any background signal. The baseline subtraction method eliminates any 

background signal that may interfere with the accurate detection of DNA melting. The result 

is a more accurate and reliable measurement of the melting temperature and any genetic 

variations in the sample. 

 

7.5 BACKGROUND CORRECTION 

1. Baseline fluorescence measurement: The instrument measures the fluorescence signal 

from a region of the reaction that does not contain any DNA, such as the negative 

control or a blank sample. 

2. Baseline fluorescence subtraction: Then it subtracts the baseline fluorescence level 

from the raw fluorescence data for each sample to correct for any background signal. 

3. Correction factor calculation: Calculates a correction factor for each sample by 

dividing the fluorescence signal of the sample by the fluorescence signal of the 

reference dye. This correction factor accounts for any variations in fluorescence 

intensity caused by differences in sample concentration or dye binding. 

• Reference dye measurement: The instrument measures the fluorescence signal 

of a reference dye that is added to each reaction. The reference dye has a 

constant fluorescence intensity and serves as a standard for the fluorescence 

measurement. 

• Raw fluorescence correction: The machine divides the raw fluorescence signal 

of each sample by the raw fluorescence signal of the reference dye to correct for 

any variations in fluorescence intensity caused by differences in sample 

concentration or dye binding. 
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4. Normalization: Then it normalizes the fluorescence data for each sample by dividing 

the corrected fluorescence signal by the average of the correction factors for all 

samples. 

 

However, there are some limitations to performing these steps manually. For example, the real-

time PCR instrument used for fluorescence measurement would need to be capable of precise 

temperature control and fluorescence detection, and the analysis would require specialized 

software for data processing and analysis. Additionally, manual analysis may be more time-

consuming and prone to errors than using dedicated software. While it is possible to perform 

some of the steps involved in converting raw fluorescence data to melt data manually, it would 

require specialized equipment and expertise and may not be as efficient or accurate as using 

PCR machines. 

Concerning the study and technical aspects behind converting raw fluorescence signals into 

melt signals, the process of manual conversion can be put in hold, and can be kept as a future 

research work of this project where those technical steps mentioned above must be 

implemented further with domain experts. To sum up everything, acquiring the machine 

converted DNA melting signal data is feasible as far as concerning the scope of the project and 

the relevant feature extraction process can be applied on such data, effectively. 
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7.6 SIGNAL PROCESSING ON DNA MELTING SIGNAL 

To process the DNA melting signal, several techniques from signal processing can be 

used. For example, noise reduction techniques, such as filtering and averaging, can be used to 

remove random fluctuations in the signal and improve its accuracy. Signal processing 

techniques can also be used to extract features from the melting curve, such as the melting 

temperature, the shape of the curve, and the width of the transition region. These features can 

then be used to compare different DNA samples or to detect mutations and structural variations 

in the DNA molecule. Another important aspect of DNA melting signal processing is the use 

of mathematical models to describe the melting process. Signal processing techniques play a 

critical role in analysing and interpreting DNA melting signals, and can provide valuable 

insights into the properties of the DNA molecule and its interactions with other molecules.  

 

Figure 38: Features can be extracted from a melt curve using signal processing 

 

7.6.1 PEAK FINDING 

 Signal peak finding is a common problem in signal processing, where the goal is to 

identify and extract significant features, such as peaks or valleys, from a given signal. A peak 

is a local maximum or high point in the signal, while a valley is a local minimum or low point 

in the signal. Peak finding algorithms are used in a variety of fields, including image 

processing, speech recognition, and data analysis. In many cases, peak finding is a critical step 

in the data analysis pipeline as it can reveal important information about the underlying process 
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generating the signal. There are many different methods for peak finding, ranging from simple 

threshold-based approaches to more sophisticated techniques like wavelet transform and 

machine learning-based approaches. These methods differ in terms of their accuracy, 

computational complexity, and robustness to noise and other types of signal artifacts. One 

commonly used approach for peak finding is the so-called "local maxima" method, where the 

signal is scanned for local maxima using a sliding window. Another popular approach is the 

"derivative-based" method, where the derivative of the signal is computed and peaks are 

identified as the points where the derivative changes sign.  

The peak finding algorithm function takes a 1-D array and finds all local maxima by simple 

comparison of neighbouring values.  

 

 

 

 

 

 

 

 

Figure 39: Detecting peaks in the DNA melting signal  

 

7.6.2 PEAK PROMINENCE 

 Signal peak prominence is a measure of the relative height of a peak in a signal 

compared to the surrounding peaks. It is a useful feature for signal processing and analysis 

because it can provide information about the importance or significance of a peak in the overall 

signal. The prominence of a peak is defined as the vertical distance between the peak and the 

lowest point on the curve that connects all neighbouring peaks that are higher. In other words, 

it measures the minimum height required to descend from the peak to a higher neighbouring 
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peak or the baseline of the signal. Signal peak prominence is commonly used in peak detection 

algorithms to filter out noise and identify only the most significant peaks in a signal. Peaks 

with high prominence are typically more important and relevant to the underlying process 

generating the signal than those with low prominence. 

Prominence can also be used to compare and quantify the differences between peaks in 

different signals or datasets. For example, it can be used to compare the amplitude of peaks in 

EEG signals recorded from different brain regions or to compare the intensity of peaks in 

spectra obtained from different chemical compounds. 

 

 

 

 

 

 

 

Figure 40: Calculating the peak prominence of the DNA melting signal  

 

7.6.3 PEAK WIDTH 

 Signal peak width is a measure of the extent of a peak in a signal along the x-axis 

(usually time or frequency). It is an important feature in signal processing and analysis because 

it can provide information about the duration or spread of a particular phenomenon represented 

by the peak. Peak width is commonly used in peak detection algorithms to distinguish between 

closely spaced or overlapping peaks. In such cases, the width of a peak can help to differentiate 

between distinct peaks and noise or artifacts in the signal. Peak width can be quantified in a 

number of ways, depending on the nature of the signal and the application. One common 

measure is the full width at half maximum (FWHM), which is the width of the peak at half its 
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maximum amplitude. Another common measure is the peak width at the baseline, which is the 

width of the peak at a certain fraction of its maximum amplitude. 

 

 

 

 

 

 

 

 

 Figure 41: Calculating the peak width of the DNA melting signal   

Using the width of the peak, the take off and touch down points can be calculated using 

the start and end points of the width. Moreover, the width of the peak is being calculated using 

the relative height of the peak which has been set to 75%. 

 

 

 

 

 

 

Figure 42: Detecting all the features from a melting signal. 
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7.6.4 AREA UNDER THE CURVE (AUC) 

The area under the curve of a signal is a fundamental concept in signal processing and 

analysis. It represents the total energy or power of the signal over a given time period. This 

concept is widely used in many fields, including physics, engineering, biology, and finance. 

The calculation of the area under the curve can provide important information about the signal, 

such as its mean, variance, and distribution. It is also a useful tool for detecting anomalies and 

patterns in the signal, which can be used for various applications such as signal classification, 

signal denoising, and signal compression. There are various methods and techniques used for 

its computation, including numerical integration, trapezoidal rule, Simpson's rule, and Monte 

Carlo integration.  

Simpson’s Rule 

Simpson's rule is a numerical integration technique used to approximate the area under a curve. 

It is based on the idea of approximating the curve with a parabolic function and then computing 

the area of the resulting parabola. 

∫[𝑎, 𝑏] 𝑓(𝑥)𝑑𝑥 ≈ (b − a)/ 6 ∗ [𝑓(𝑎) +
4𝑓(𝑎 + 𝑏)

2
+ 𝑓(𝑏)] 

 

where f(x) is the function to be integrated, [a,b] is the interval over which the integration is to 

be performed, and (a+b)/2 is the midpoint of the interval. The formula can be understood as 

follows: the area under the curve is approximated by dividing the interval [a,b] into subintervals 

of equal width, and then approximating the curve over each subinterval with a parabolic 

function. The area under each parabola is then computed and added together to obtain an 

approximation of the total area under the curve. 

Simpson's rule is known to be more accurate than other numerical integration techniques, such 

as the trapezoidal rule, for functions that are smooth and have a relatively simple shape. 

However, it may not be as effective for functions that have sharp changes or irregularities in 

their shape. 

As far as, the peak detection and feature extraction using signal processing methods, 

provided significant results, and it detects all possible features of a DNA melting signal 



 

88 
 

including peak prominence, width, and area under the curve. However, it is also notable that, 

the peak detection process is performed without any thresholding, i.e., whatever the peaks 

introduced in a signal, are being captured, which in turn provides all the peaks, disregarding 

the desired peak necessitate for analysis. This is the scenario, where thresholding plays a crucial 

role in removing unwanted signals.   

 

 

 

 

 

 

 

Figure 43: Negative(noise) signal with peaks detected 

The negative signal as shown in the fig 43 should not be taken into consideration, as there is 

no any DNA melting is observed, but performing signal processing methods, has captured the 

minute noises as peaks, which is inappropriate. Proper thresholding techniques must be applied 

on such signals, such that noisy and unwanted peaks can be removed earlier, before bringing 

them into analysis.  

Thresholding has been performed in the prevailing context, with a visual inspection, which 

involve manual configurations on the prominences of DNA melting signals. A decent 

prominence level will be fixed, so that, peaks above such points are only considered, where 

remaining will be left as noisy/ unwanted signals. 

Since it is an AI based framed, which should perform tasks on its own, without any human 

intervenes, proper logic must be applied to set self-thresholding levels, so that, only necessary 

peaks will be taken for analysis. 
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7.7 THRESHOLDING LOGIC 

As stated earlier, logic for thresholding must be very appropriate and should be in a way to 

detect only genuine signals. In most of the melting signals, peaks with sound prominences will 

be chosen for analysis. In fact, even small peaks with smaller prominences also taken into 

consideration at some times, concerning all other parameters like melting temperature etc., 

 

 

Figure 44: Measuring the prominences 

 

Threshold is being set (red coloured line) for the peaks shown in the Figure 3.23, which rejects 

the second peak over the first peak, that has higher prominence as compared to the second one. 

On the other hand, while measuring the prominences of the peaks, it is observed that, the peaks 

introduced later are with the ~20% prominence of the first peak. Hence, the logic has to applied 

in a manner to detect the highest peak in the signal, and to compare the prominences of its other 

neighbouring peaks, such that, the peaks which has more than ~20% prominence of the highest 

peak (first peak) will be considered.  
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RESULT AND DISCUSSION 

 In this approach, raw fluorescence signals were initially converted into a melting signal 

using a gradient function and applied interpolation algorithm like Spline, to reduce the noise 

introduced in the signals. As a result, signals are smoothened, but does not provide authenticity, 

since the parameter of the spline function is highly variable. Therefore, a machine processed 

DNA melting signals are adopted and processed further with signal processing methods like 

peak finding, peak prominences, peak width and area under the curve, to extract necessary 

information of such signals. Later, Thresholding logic has been approached to keep only 

genuine and desired peak, but on applying such logic, does not provide significant result, as 

the ~20% value is not significant, and the value varies data to data. 

 

CONCLUSION 

Apart from feature extraction, developing a sensible logic on thresholding is mandatory. 

Applying a mathematical equation for thresholding provides significant result for certain data, 

but has rate of variability, and the result which comes out of such equation becomes 

insignificant at some scenarios. Proper, alternate solution must be employed, so that, unwanted 

peaks and noisy signals are removed from the analysis. 

 

 

 

 

 

 

 

 

 

 



 

91 
 

CHAPTER 8 

COMBINATION OF APPROACH ON IMAGES AND THE CO-

ORDINATES OF DNA MELTING SIGNAL 

 

 In the previous section, thresholding becomes a challenging process, where applying 

logic, based on peak prominences is not significant, and highly variable. To tackle such 

hindrance, an image-based approach is being performed in this chapter, to introduce an image-

based thresholding, as like how conventional thresholding is being done through visual 

inspection. This can be achieved through the traditional computer vision algorithm like 

Convolution Neural Network, that can be used to classify genuine and non-genuine peaks, by 

training them on multiple images of DNA melting signals, generated randomly from a pool of 

samples. 

 

8.1 CONVOLUTION NEURAL NETWORK 

A Convolutional Neural Network (CNN) is a type of neural network that is commonly used in 

image and video recognition tasks. It is a deep learning algorithm that learns to automatically 

extract features from input images, through a process called convolution. The key feature of a 

CNN is its ability to learn and identify spatial patterns in an image. This is done through the 

use of convolutional layers, which apply filters to an input image to extract specific features. 

These features are then passed on to other layers in the network, such as pooling layers and 

fully connected layers, to further refine the information and classify the input image. 

CNNs have achieved state-of-the-art performance in various computer vision tasks such as 

object detection, face recognition, and image segmentation. They have also been used in other 

domains, such as natural language processing and speech recognition. 

Classifying genuine and non-genuine DNA melting signals is an important task in DNA 

analysis and sequencing. Convolutional Neural Networks (CNNs) have been used to address 

this problem by learning to automatically extract features from the melting signals and classify 

them as genuine or non-genuine.  
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During training, the CNN is fed with a large dataset of labelled DNA melting signals, consisting 

of both genuine and non-genuine examples. The network learns to differentiate between these 

two classes by adjusting the weights of its filters through a process called backpropagation. 

Once trained, the CNN can be used to classify new DNA melting signals as genuine or non-

genuine. By the way using CNNs to classify genuine and non-genuine DNA melting signals 

will be a promising approach. 

 

Figure 45: Concept of Convolution Neural Network for classifying DNA melting signal 

 

To train a CNN model, to classify DNA melting signals of “Single Peaked”, “Double Peaked” 

and “Noise”, necessary training images has to be generated and must be labelled accordingly. 

ConvNets, or Convolutional Neural Networks, have shown promising results in DNA analysis, 

particularly in the classification of DNA melting signals. They are able to automatically extract 

relevant features from the data and learn to classify the signals based on these features. In the 

context of DNA signal thresholding, ConvNets can be used to generate an image of the signal 

based on provided coordinates. The image is then processed through the trained neural network, 

which has learned to identify and extract specific features from the signal. The network's 

feature maps, which are created during training, enable it to provide a probability distribution 

indicating the likelihood that the signal belongs to a particular probability density function 
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(PDF). For example, the network might output a probability distribution indicating that the 

signal is more likely to belong to the PDF of "Single Peaked" than to the PDF of "Double 

Peaked" or "Noise". This information can be used to threshold the signal and separate genuine 

signals from noise or other artifacts. 

 

8.2 GENERATING IMAGE DATA SET 

Images of DNA melting signal, will be generated, from the acquired co-ordinates data from 

PCR machines. The image generation includes all type of signals like ‘Single peaked’, ‘Double 

peaked’ and ‘Noisy’ signals. 

 

 

Figure 46: Training images of DNA melting signals of various class ‘Single’, ’Double’ and ‘Noise’ 
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 8.3 MODEL ARCHTECTURE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Model architecture with layers 
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There are totally 569 images, which has 206 “Noisy Signals” labelled as 0, 197 “Single peaked 

signals” labelled as 1, and finally 166 “Double peaked signals” labelled as 2. 

The architecture of the model has 2 convolution layers with 2 pooling layers and 2 Dense 

layers, which as a whole, has 16,467 total trainable parameters. The input shape of the image 

is reshaped into (30,30) with 3 channels.  The first convolution layer has a kernel size of (5,5), 

with pooling size of (2,2) and the second convolution layer has a kernel size of (3,3) with a 

pooling size of (2,2).  The activation function used in these layers is ReLU. There are 2 Dense 

layers in the architecture, which has 12832 trainable parameters, with ReLU and Softmax as 

activation functions. The model has been trained with 20 epochs with a batch size of 8. 

 

 

Figure 48: Model performance with Accuracy and Loss 

 

The Model has a validation accuracy of 83.81% and the training accuracy of 86.67%, which 

looks like, the model doesn’t overfit to the data. Since it is a multiclass classification problem, 

looking on the accuracy is not sufficient. The true accuracy of the model will be assessed by 

looking on metrics like precision and recall. Furtherly, on combing both the metrics, f1 score 

can be taken into consideration, as it is harmonic mean of both precision and recall, will 

produce a significant and reliable result if the model truly performs good. 
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 0 1 2 accuracy macro avg weighted avg 

precision 0.8 0.857143 1 0.871795 0.885714 0.885714  
recall 0.923077 0.923077 0.769231 0.871795 0.871795 0.871795  
f1-score 0.857143 0.888889 0.869565 0.871795 0.871866 0.871866  
support 13 13 13 0.871795 39 39  

 

Table 4:  Model performance metrics 

The f1 score provides 85+% of accuracy, which denotes both the precision and recall are high. 

This result has been evaluated on testing the model on different test images, which the model 

hasn’t yet seen before. 

 

  

 

 

 

 

 

 

 

 

Figure 49:  Confusion matrix for the results of CNN model. 

Once the model has been validated and tested, it can be applied in the process of extracting 

information of DNA melting signals with image- based thresholding along with the signal 

processing method. The model will provide a probabilistic result (0 or 1 or 2), based on which, 

number of peaks will be considered. If model says ‘1’, feature extraction will be done on, the 

first highest peak (peaks will be sorted in descending order of prominence), leaving the reaming 

peaks as out of concern. 



 

98 
 

 

Figure 50:  Classification of CNN model between genuine and non-genuine peaks. 

In the Figure 3.28 ‘Green’ coloured signals are identified as ‘genuine’ and ‘Red’ coloured 

signals are identified as ‘non-Genuine’. For each signal, number of peaks, that has to be 

considered will be given (0,1,2) based on that, feature extraction will be made. 
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RESULT AND DISCUSSION 

The CNN based thresholding has provided a significant result, as the model was trained with 

images of genuine and non-genuine peaks, such that it could learn patterns of such signal, 

which as a result can identify and classify signals. Based on the result of the model, feature 

extraction process has been performed and relevant features of the classified signals are 

captured and stored in the feature store for model building. 
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CHAPTER 9 

SYSTEM DESIGN & DEVELOPMENTS 

 

9.1 COMPONENTS  

 For developing the AI-based framework for automated analysis, interpretation and data 

management for the HRM data, which is generalized and optimized , three major components 

were developed by the team are 

• EXTRACTOR (data extraction tool) 

• PyHRM (Feature engineering) 

• Meltcurve Interpreter (prediction) 

 

The team has developed three major components for developing an AI-based framework for 

automated analysis, interpretation, and data management of High-Resolution Melting (HRM) 

data. These components include the data extraction tool called "EXTRACTOR," the feature 

engineering tool called "PyHRM," and the prediction tool called "Meltcurve Interpreter." 

The EXTRACTOR tool is used to extract data from the raw HRM files, while the PyHRM tool 

is used for feature engineering, which involves extracting relevant features from the HRM data. 

Finally, the Meltcurve Interpreter tool uses predictive analytics and deep learning models to 

interpret the extracted features and predict the presence of the intended molecular target in a 

clinical sample tested. 

These three components work together to develop an AI-based framework that can automate 

the analysis and interpretation of HRM data, allowing for faster and more accurate diagnosis 

of infectious diseases. With this framework, clinicians can make more informed decisions and 

plan the course of treatment for their patients. 
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Figure 51: AI-framework 
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9.2 EXTRACTOR 

 Extractor is a lightweight simple GUI-based application (figure.) that 

extracts '.rex' files from the Qiagen's Rotor-Gene Q Software to the necessary '.xls' file. It's 

built for the users such as laboratory technicians and clinicians who handle and run PCR 

experiments especially in Qiagen's Rotor-Gene Q thermal cycler machine. 

 

 

Figure 52: User interface of Extractor 

 

 After the successful experiment ran in Rotor-Gene Q cycler, it produces the raw data 

and the users which can be only opened and analyzed via Qiagen's Q-Rex Software. If a 

specific run file (raw data) has to be exported into desired formats such as text(.txt), HTML 

Table(.html), XML(.xml), excel(.xls) given by the Qiagen Rotor-Gene Q-Rex Software. Here 

we automated the user role by our EXTRACTOR Software, by which you simply put the raw 

data file directory and desired directory to which the excel files are stored in your system, 

which saves time and not to burned out from this repititive task. 
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9.2.1 FRAMEWORK 

 The framework for the extractor application is below 

 

Figure 53: Framework of extractor 

ManualConversion 

 Time consuming and often introduce frustation and inconsistency, while converting 

bulks of raw data by manual process. 

Automatic Conversion 

 Runs in a constant time and it handle countless of raw data automatically without any 

human intervence. 

Features 

• Able to set user credentials. 

• Selection of which type of data to extract from the raw data, i.e., 

• CT (Amplification Curve) 

• MELT (derivative) & 

• HRM (Normalized fluorescence) 

• Supports desired output format as excel file. 
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Types of data to extracts 

 Select the type of data from the drop-down menu and enter the respected fields below 

and finally enter submit (figure). 

• CT  

• MELT  

• HRM  

System Requirements 

 The following are the essential requirements for this software to run: 

 

 

 

 

Figure 54: Type of data to extract 

 

 

 

 

Q-Rex Software : Rotor-Gene Q Software v2.3.5 (Build 1) 

Platforms            : Windows 10 / 11 
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9.3 PyHRM 

 We developed a python-based library called PyHRM for processing High-Resolution 

Melting (HRM) data, especially, DNA melting signals to extract features like 'Melting 

Temperatures', 'Take-off and Touch-down points of melting signal (Temperature at which peak 

start rising and temperature at which peak falls down)','Peak prominences', and 'Area Under 

the curve'. Additionally, the library offers interactive visualization for DNA melting signal and 

vision based filtering, to eliminate noisy signals from the data and provides only genuine peaks 

with all the above mentioned features. 

Installing with PyPi 

 The PyHRM library can be installed with using pip command,   

  python -m pip install PyHRM or pip3 install PyHRM 

 

Figure 55: PyHRM installation 

File stack of the library 

  The file stack of the PyHRM library consists of various files including .py and .h5 files 

which are basement for feature detection of HRM data. 

 

 

 

 

 

 

 

 

Figure 56:  File stack of PyHRM 
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 The Deep Learning model has been saved using the method in Keras module as CNN.h5 

for meltcurve peak classification. The melt.py has major functions like data read, 

melt_conversion, feature_detection, report_generation for processing HRM data. 

Dependencies of PyHRM 

 The following are the necessary dependencies for the PyHRM. 

• fpdf==1.7.2 

• kaleido==0.2.1 

• keras==2.12.0 

• matplotlib==3.6.3 

• numpy==1.23.5 

• openpyxl==3.1.0 

• packaging==23.1 

• pandas==1.5.3 

• Pillow 

• plotly==5.13.0 

• Requests==2.28.2 

• scipy==1.10.1 

• tensorflow==2.12.0 

• tqdm==4.64.1 

• xlrd==2.0.1 

 Features 

 The PyHRM library has the following features 

• Rapid preprocessing. 

• Feature Extraction 

o Tm (Melting Temperature (Max 2)) 

o Tstart (Starting temperature point) 

o Tend (Ending Temperature) 

o Prominence 

o Area Under the curve 

• Interactive Visulization. 

• Computer Vision based thresholding for eliminating noisy signals. 

• Report Generation. 

 

Input data format 
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 The PyHRM has only supports .xls and .xlsx formats for seamless analysis. 

 

Figure 57: Input data format for PyHRM 

Working of library 

 The library has been imported in the any notebook IDEs, by with the following  

commands in figure. Next to create a class instance for the meltcurve interpreter module present 

in the PyRM 

 

Figure 58:  Import PyHRM  

 To process the HRM data with the desired input format using data_read() with the 

necessary parameters and to visualize the HRM data with using the plot() figure 
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Figure 59: Output of plot()  

 

 The major function in this library which detects the features of HRM signals using 

customized Deep Learning model using feature_detection() which returns the outputs in 

dataframe  format. To generate and download the report of features using report() in pdf format 

figure. 

 

 

Figure 60:  Features of HRM data using feature_detection() 
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Figure 61: Reports of features_detection  
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9.4 MELTCURVE INTERPRETER 

 The MeltcurveInterpreter is a web-based application for analysing and interpreting the 

final results from the consequences of extractor and PyHRM library. This module consists of 

various files and folders such as .py, .html, .css, .h5 for the final classification and interpretation 

of Meningitidis panel figure . 

 

 

 

 

 

 

 

 

 

 

 

Figure 62: File stack of meltcurve interpreter 

 Here Meltcurve interpreter [MCI], there are two main Deep Learning models melt.h5, 

MEP_Model.h5 for the meltcurve peak classification and the molecular target classification 

respectively. 

 The front-end of the MCI has the following files in the directory: 

   Templates 

• Home.html 

• Homepage.html 

• Index.html 

• Melt.html 

• CT.html 

• FDP.html 

• Statistics.html 

• Report.html 

• Help.html 
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• Static 

• Stylesheets 

• Images 

 

 The back-end of the MCI has the following files in the directory: 

  LocalMeltcurveAnalysis 

• melt.h5 

• MEP_Model.h5 

• meltcurve_interpreter 

 The meltcurve interpreter was deployed using a simple web development framework in 

python called flask.  

 MCI is designed as user-friendly with multiple features such as file upload, 

visualization of interactive graphs, feature detection, EDA, final report. 

 

Figure 63:  MCI Interface 
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 The home page of MCI describes the organization profiles and working modules as 

shown in figure 64 

 

Figure 64: MCI Home page 

 The file upload page consists of Melt and Ct files in excel format which is mandatory, 

and it gives a token which is used to retrieved the data at anytime. The uploaded files are storing 

and retrieval in the centralized database using PostgreSQL figure. 

Figure 65: MCI file upload  
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 Once the file has been uploaded ,it can be retrieved with the  token and username for 

further analysis and for the visualisation of Melt and Amplification curves figure . 

 

Figure 66: MCI Melt curve visualisation 

 

 

Figure 67:  MCI amplification curvet visualisation 
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  The classification of Melt peaks for thresholding and features of melt signals are 

detected by the feature detection panel its gave a peak features like temperature start, end, 

AUC, prominence, width and target of the samples tested figure. 

 

Figure 68: MCI feature detection panel 

 The statistical measures of the HRM data to gain insights with stipulated statistical 

analysis figure 

Figure 69:  MCI Statistical measures  
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 Finally, the report has been generated in pdf format with the melt curve graphs of 

classified peaks with features table as shown in fig.71 

 

Figure 70: MCI Report Generation  

Figure 71:  MCI Final Report 
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9.5 ER DIAGRAM  

 The Entity-Relationship Diagram for the back-end database component of MCI as 

shown below fig. 

 

Figure 72: ER diagram of MCI database component 
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CHAPTER 10  

TESTING AND RESULTS 

10.1 TEST DATA 

 The following unknown patient sample data (fig.73 ) has been used to test the MCIs 

Deep Learning Model of pathogen classification (fig. ). 

 

Figure 73:  Melt curve test data 

 The Model has a test accuracy of 85% and the training accuracy of 86.67%, which looks 

like, the model doesn’t overfit to the data. Since it is a multiclass classification problem, 

looking on the accuracy is not sufficient.  

 

\ 

 

 

 

 

 

Figure 74: Features of melt curve test data 
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 The true accuracy (fig 75)of the model will be assessed by looking on metrics like 

precision and recall. Furtherly, on combing both the metrics, f1 score can be taken into 

consideration, as it is harmonic mean of both precision and recall, will produce a significant 

and reliable result if the model truly performs good. 

 

 

 

 

 

 

 

 

Figure 75:  Accuracy and loss metrics for the MEP_Model 

  The confusion matrix for the pathogen classification model (fig.76 ) which classifies 

the pathogens present in the Meningitidis panel. Here, the model classifies the SP, HI and 

NM pathogens with less false-positive rates. 

 

 

 

 

 

 

 

 

Figure 76:  Confusion Matrix for MEP_model  
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Figure 77:  Accuracy and loss metrics for the MEP_Model 
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CONCLUSION 

 

In the current scenario, the diagnosis of infectious diseases is rapidly moving towards 

molecular assays, with several major biotechnology companies developing ready-to-use 

molecular kits. However, the reporting of these molecular assays is largely dependent on visual 

interpretation and analysis by technicians, which has significantly affected the acceptability of 

these assays in commercial diagnostic setups such as clinical laboratories and hospitals. 

This project aims to lay the foundation for developing a framework for automated 

analysis of molecular assays, which is first-of-its-kind. We have successfully shown that by 

using predictive analytics and deep learning models on High-Resolution Melting data, several 

distinct features can be extracted that can be used to develop an algorithm to indicate the 

presence of the intended molecular target in a clinical sample tested. 

This project can be further developed into a full-fledged software that can aid clinicians 

in diagnosing several diseases and planning the course of treatment. This software has the 

potential to revolutionize the molecular diagnosis field and improve the digital compatibility 

of molecular assay interpretation with the existing laboratory information management system. 
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